LOW FLAT RATE AUST-WIDE $9.90 DELIVERY INFO

Close Notification

Your cart does not contain any items

$164.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
John Wiley & Sons Inc
08 April 2022
Engineering Fluid Mechanics, 12th edition, guides students from theory to application, emphasizing skills like critical thinking, problem solving and modeling to apply fluid mechanics concepts to solve real-world engineering problems. The essential concepts are presented in a clear and concise format, while abundant illustrations, charts, diagrams, and examples illustrate complex topics and highlight the physical reality of fluid dynamics applications. The text emphasizes on technical derivations, presenting derivations of main equation in a step-by-step manner and explaining their holistic meaning in words. The Wales-Wood Model is used throughout the text to solve numerous example problems. This International Adaptation comes with some updates that enhance and expand certain concepts and some organizational changes. The edition provides a wide variety of new and updated solved problems, real-world engineering examples, and end-of-chapter homework problems and  has been completely updated to use SI units. The text, though written from civil engineering perspective, adopts an interdisciplinary approach which makes it suitable for engineering students of all majors who are taking a first or second course in fluid mechanics.
By:   , , , , , ,
Imprint:   John Wiley & Sons Inc
Country of Publication:   United States
Edition:   12th edition
Dimensions:   Height: 10mm,  Width: 10mm, 
Weight:   454g
ISBN:   9781119820734
ISBN 10:   1119820731
Pages:   608
Publication Date:  
Audience:   College/higher education ,  Primary
Format:   Paperback
Publisher's Status:   Active
1.  Introduction  1.1 Engineering Fluid Mechanics  1.2 Modeling in Fluid Mechanics and Engineering  1.3 Modeling of Materials  1.4 Weight, Mass, and Newton’s Law of Gravitation  1.5 Essential Mathematics Topics  1.6 Density and Specific Weight  1.7 The Ideal Gas Law (IGL)  1.8 Quantity, Units, and Dimensions  1.9 Problem Solving  1.10 Summarizing Key Knowledge  Problems    2.  Fluid Properties  2.1 System, State, and Property  2.2 Looking Up Fluid Properties  2.3 Specific Gravity, Constant Density, and the Bulk Modulus  2.4 Pressure and Shear Stress  2.5 The Viscosity Equation  2.6 Surface Tension and Capillary Action  2.7 Vapor Pressure, Boiling, and Cavitation  2.8 Characterizing Thermal Energy in Flowing Gases  2.9 Summarizing Key Knowledge  Problems    3. Fluid Statics  3.1 Describing Pressure  3.2 The Hydrostatic Equations  3.3 Measurement of Pressure  3.4 The Pressure Force on a Panel (Flat Surface)  3.5 Calculating the Pressure Force on a Curved Surface  3.6 Calculating Buoyant Forces  3.7 Predicting Stability of Immersed and Floating Bodies  3.8 Summarizing Key Knowledge  Problems    4.  Bernoulli Equation and Pressure Variation  4.1 Flow Patterns: Streamlines, Streaklines, and Pathlines  4.2 Characterizing Velocity of a Flowing Fluid  4.3 Describing Flow  4.4 Acceleration  4.5 Applying Euler’s Equation to Understand Pressure Variation  4.6 The Bernoulli Equation along a Streamline  4.7 Measuring Velocity and Pressure  4.8 Characterizing the Rotational Motion of a Flowing Fluid  4.9 The Bernoulli Equation for Irrotational Flow  4.10 Describing the Pressure Field for Flow over a Circular Cylinder  4.10 Elementary Plane potential Flows  4.11 Calculating the Pressure Field for a Rotating Flow  4.12 Summarizing Key Knowledge  Problems  5. The Control Volume Approach and The Continuity Equation  5.1 Characterizing the Rate of Flow  5.2 The Control Volume Approach  5.3 The Continuity Equation (Theory)  5.4 The Continuity Equation (Application)  5.5 Predicting Cavitation  5.6 Summarizing Key Knowledge    6.  The Momentum Equation  6.1 Understanding Newton’s Second Law of Motion  6.2 The Linear Momentum Equation: Theory  6.3 The Linear Momentum Equation: Application  6.4 The Linear Momentum Equation for a Stationary Control Volume  6.5 Examples of the Linear Momentum Equation (Moving Objects)  6.6 The Angular Momentum Equation  6.7 Summarizing Key Knowledge  Problems    7. The Energy Equation  7.1 Technical Vocabulary: Work, Energy, and Power  7.2 Conservation of Energy  7.3 The Energy Equation  7.4 The Power Equation  7.5 Mechanical Efficiency  7.6 Contrasting the Bernoulli Equation and the Energy Equation  7.7 Transitions  7.8 The Hydraulic and Energy Grade Lines  7.9 Summarizing Key Knowledge  Problems    8. Dimensional Analysis and Similitude  8.1 The Need for Dimensional Analysis  8.2 Buckingham ∏ Theorem  8.3 Dimensional Analysis  8.4 Common π-Groups  8.5 Similitude  8.6 Model Studies for Flows without Free-Surface Effects  8.7 Model–Prototype Performance  8.8 Approximate Similitude at High Reynolds Numbers  8.9 Free-Surface Model Studies  8.10 Summarizing Key Knowledge  Problems  9.  Viscous Flow Over a Flat Surface, Drag and Lift  9.1 The Navier–Stokes Equation for Uniform Flow  9.2 Couette Flow  9.3 Poiseuille Flow in a Channel  9.4 The Boundary Layer (Description)  9.5 Velocity Profiles in the Boundary Layer  9.6 The Boundary Layer (Calculations)  9.7 Relating Lift and Drag to Stress Distributions   9.8 Calculating the Drag Force   9.9 Drag of Axisymmetric and 3-D Bodies  9.10 Terminal Velocity   9.11 Vortex Shedding  9.12 Reducing Drag by Streamlining  9.13 Drag in Compressible Flow  9.14 The Theory of Lift  9.15 Lift and Drag on Airfoils  9.16 Lift and Drag on Road Vehicles  9.17 Summarizing Key Knowledge  Problems  10. Flow in Conduits  10.1 Classifying Flow  10.2 Specifying Pipe Sizes  10.3 Pipe Head Loss (Major and Minor losses)  10.4 Stress Distributions in Pipe Flow  10.5 Laminar Flow in a Circular Pipe  10.6 Turbulent Flow and the Moody Chart  10.7 A Strategy for Solving Problems  10.8 Combined Head Loss  10.9  Noncircular Conduits  10.10 Pumps and Systems of Pipes  10.11 Summarizing Key Knowledge  Problems    11. Compressible Flow   11.1 Wave Propagation in Compressible Fluids  11.2 Mach Number Relationships  11.3 Normal Shock Waves  11.4 Isentropic Compressible Flow through a Duct with Varying Area  11.5 Summarizing Key Knowledge  Problems  12.  Flow Measurements   12.1 Measuring Velocity and Pressure  12.2 Measuring Flow Rate (Discharge)  12.3 Summarizing Key Knowledge  Problems    13.Turbomachinery   13.1 Propellers  13.2 Axial-Flow Pumps  13.3 Radial-Flow Machines  13.4 Specific Speed  13.5 Suction Limitations of Pumps  13.6 Viscous Effects  13.7 Centrifugal Compressors  13.8 Positive Displacement Pumps  13.9 Turbines  13.10 Summarizing Key Knowledge  Problems    14. Flow in Open Channels  14.1 Describing Open-Channel Flow  14.2 Energy Equation for Steady Open-Channel Flow  14.3 Steady Uniform Flow  14.4 Steady Nonuniform Flow  14.5 Rapidly Varied Flow  14.6 Hydraulic Jump  14.7 Gradually Varied Flow  14.8 Summarizing Key Knowledge  Problems    15.  Modeling of Fluid Dynamics Problems   15.1 Models in Fluid Mechanics  15.2 Foundations for Learning Partial Differential Equations (PDEs)  15.3 The Continuity Equation  15.4 The Navier–Stokes Equation  15.5 Computational Fluid Dynamics (CFD)  15.6 Examples of CFD  15.7 A Path for Moving Forward  15.8 Summarizing Key Knowledge  Problems    Appendix  Answers  Index 

See Also