AUSTRALIA-WIDE LOW FLAT RATE $9.90

Close Notification

Your cart does not contain any items

$138.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Wiley-Blackwell
29 December 2022
STATISTICAL THINKING FOR NON-STATISTICIANS IN DRUG REGULATION

Statistical methods in the pharmaceutical industry are accepted as a key element in the design and analysis of clinical studies. Increasingly, the medical and scientific community are aligning with the regulatory authorities and recognizing that correct statistical methodology is essential as the basis for valid conclusions. In order for those correct and robust methods to be successfully employed there needs to be effective communication across disciplines at all stages of the planning, conducting, analyzing and reporting of clinical studies associated with the development and evaluation of new drugs and devices.

Statistical Thinking for Non-Statisticians in Drug Regulation provides a comprehensive in-depth guide to statistical methodology for pharmaceutical industry professionals, including physicians, investigators, medical science liaisons, clinical research scientists, medical writers, regulatory personnel, statistical programmers, senior data managers and those working in pharmacovigilance. The author’s years of experience and up-to-date familiarity with pharmaceutical regulations and statistical practice within the wider clinical community make this an essential guide for the those working in and with the industry.

The third edition of Statistical Thinking for Non-Statisticians in Drug Regulation includes:

A detailed new chapter on Estimands in line with the 2019 Addendum to ICH E9 Major new sections on topics including Combining Hierarchical Testing and Alpha Adjustment, Biosimilars, Restricted Mean Survival Time, Composite Endpoints and Cumulative Incidence Functions, Adjusting for Cross-Over in Oncology, Inverse Propensity Score Weighting, and Network Meta-Analysis Updated coverage of many existing topics to reflect new and revised guidance from regulatory authorities and author experience

Statistical Thinking for Non-Statisticians in Drug Regulation is a valuable guide for pharmaceutical and medical device industry professionals, as well as statisticians joining the pharmaceutical industry and students and teachers of drug development.
By:  
Imprint:   Wiley-Blackwell
Country of Publication:   United Kingdom
Edition:   3rd edition
Dimensions:   Height: 245mm,  Width: 178mm,  Spine: 29mm
Weight:   879g
ISBN:   9781119867388
ISBN 10:   111986738X
Pages:   432
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
Preface to the second edition, xv Preface to the first edition, xvii Abbreviations, xxi 1             Basic ideas in clinical trial design, 1 1.1         Historical perspective, 1 1.2         Control groups, 2 1.3         Placebos and blinding, 3 1.4         Randomisation, 3 1.4.1      Unrestricted randomisation, 4 1.4.2      Block randomisation, 4 1.4.3      Unequal randomisation, 5 1.4.4      Stratified randomisation, 6 1.4.5      Central randomisation, 7 1.4.6      Dynamic allocation and minimisation, 8 1.4.7      Cluster randomisation, 9 1.5         Bias and precision, 9 1.6         Between- and within-patient designs, 11 1.7         Crossover trials, 12 1.8         Signal, noise and evidence, 13 1.8.1      Signal, 13 1.8.2      Noise, 13 1.8.3      Signal-to-noise ratio, 14 1.9         Confirmatory and exploratory trials, 15 1.10       Superiority, equivalence and non-inferiority trials, 16 1.11       Data and endpoint types, 17 1.12       Choice of endpoint, 18 1.12.1    Primary variables, 18 1.12.2    Secondary variables, 19 1.12.3    Surrogate variables, 20 1.12.4    Global assessment variables, 21 1.12.5    Composite variables, 21 1.12.6    Categorisation, 21 2             Sampling and inferential statistics, 23 2.1         Sample and population, 23 2.2         Sample statistics and population parameters, 24 2.2.1      Sample and population distribution, 24 2.2.2      Median and mean, 25 2.2.3      Standard deviation, 25 2.2.4      Notation, 26 2.2.5      Box plots, 27 2.3         The normal distribution, 28 2.4         Sampling and the standard error of the mean, 31 2.5         Standard errors more generally, 34 2.5.1      The standard error for the difference between two means, 34 2.5.2      Standard errors for proportions, 37 2.5.3      The general setting, 37 3             Confidence intervals and p-values, 38 3.1         Confidence intervals for a single mean, 38 3.1.1      The 95 per cent Confidence interval, 38 3.1.2      Changing the confidence coefficient, 40 3.1.3      Changing the multiplying constant, 40 3.1.4      The role of the standard error, 41 3.2         Confidence interval for other parameters, 42 3.2.1      Difference between two means, 42 3.2.2      Confidence interval for proportions, 43 3.2.3      General case, 44 3.2.4      Bootstrap Confidence interval, 45 3.3         Hypothesis testing, 45 3.3.1      Interpreting the p-value, 46 3.3.2      Calculating the p-value, 47 3.3.3      A common process, 50 3.3.4      The language of statistical significance, 53 3.3.5      One-sided and two-sided tests, 54 4             Tests for simple treatment comparisons, 56 4.1         The unpaired t-test, 56 4.2         The paired t-test, 57 4.3         Interpreting the t-tests, 60 4.4         The chi-square test for binary data, 61 4.4.1      Pearson chi-square, 61 4.4.2      The link to a ratio of the signal to the standard error, 64 4.5         Measures of treatment benefit, 64 4.5.1      Odds ratio, 65 4.5.2      Relative risk, 65 4.5.3      Relative risk reduction, 66 4.5.4      Number needed to treat, 66 4.5.5      Confidence intervals, 67 4.5.6      Interpretation, 68 4.6         Fisher’s exact test, 69 4.7         Tests for categorical and ordinal data, 71 4.7.1      Categorical data, 71 4.7.2      Ordered categorical (ordinal) data, 73 4.7.3      Measures of treatment benefit, 74 4.8         Extensions for multiple treatment groups, 75 4.8.1      Between-patient designs and continuous data, 75 4.8.2      Within-patient designs and continuous data, 76 4.8.3      Binary, categorical and ordinal data, 76 4.8.4      Dose-ranging studies, 77 4.8.5      Further discussion, 77 5             Adjusting the analysis, 78 5.1         Objectives for adjusted analysis, 78 5.2         Comparing treatments for continuous data, 78 5.3         Least squares means, 82 5.4         Evaluating the homogeneity of the treatment effect, 83 5.4.1      Treatment-by-factor interactions, 83 5.4.2      Quantitative and qualitative interactions, 85 5.5         Methods for binary, categorical and ordinal data, 86 5.6         Multi-centre trials, 87 5.6.1      Adjusting for centre, 87 5.6.2      Significant treatment-by-centre interactions, 87 5.6.3      Combining centres, 88 6             Regression and analysis of covariance, 89 6.1         Adjusting for baseline factors, 89 6.2         Simple linear regression, 89 6.3         Multiple regression, 91 6.4         Logistic regression, 94 6.5         Analysis of covariance for continuous data, 94 6.5.1      Main effect of treatment, 94 6.5.2      Treatment-by-covariate interactions, 96 6.5.3      A single model, 98 6.5.4      Connection with adjusted analyses, 98 6.5.5      Advantages of ANCOVA, 99 6.5.6      Least squares means, 100 6.6         Binary, categorical and ordinal data, 101 6.7         Regulatory aspects of the use of covariates, 103 6.8         Baseline testing, 105 7             Intention-to-treat and analysis sets, 107 7.1         The principle of intention-to-treat, 107 7.2         The practice of intention-to-treat, 110 7.2.1      Full analysis set, 110 7.2.2      Per-protocol set, 112 7.2.3      Sensitivity, 112 7.3         Missing data, 113 7.3.1      Introduction, 113 7.3.2      Complete cases analysis, 114 7.3.3      Last observation carried forward, 114 7.3.4      Success/failure classification, 114 7.3.5      Worst-case/best-case classification, 115 7.3.6      Sensitivity, 115 7.3.7      Avoidance of missing data, 116 7.3.8      Multiple imputation, 117 7.4         Intention-to-treat and time-to-event data, 118 7.5         General questions and considerations, 120 8             Power and sample size, 123 8.1         Type I and type II errors, 123 8.2         Power, 124 8.3         Calculating sample size, 127 8.4         Impact of changing the parameters, 130 8.4.1      Standard deviation, 130 8.4.2      Event rate in the control group, 130 8.4.3      Clinically relevant difference, 131 8.5         Regulatory aspects, 132 8.5.1      Power >80 per cent, 132 8.5.2      Powering on the per-protocol set, 132 8.5.3      Sample size adjustment, 133 8.6         Reporting the sample size calculation, 134 9             Statistical significance and clinical importance, 136 9.1         Link between p-values and Confidence intervals, 136 9.2         Confidence intervals for clinical importance, 137 9.3         Misinterpretation of the p-value, 139 9.3.1      Conclusions of similarity, 139 9.3.2      The problem with 0.05, 140 9.4         Single pivotal trial and 0.05, 140 10           Multiple testing, 142 10.1       Inflation of the type I error, 142 10.1.1    False positives, 142 10.1.2    A simulated trial, 142 10.2       How does multiplicity arise?, 143 10.3       Regulatory view, 144 10.4       Multiple primary endpoints, 145 10.4.1    Avoiding adjustment, 145 10.4.2    Significance needed on all endpoints, 145 10.4.3    Composite endpoints, 146 10.4.4    Variables ranked according to clinical importance: Hierarchical testing, 146 10.5       Methods for adjustment, 149 10.5.1    Bonferroni correction, 149 10.5.2    Hochberg correction, 150 10.5.3    Interim analyses, 151 10.6       Multiple comparisons, 152 10.7       Repeated evaluation over time, 153 10.8       Subgroup testing, 154 10.9       Other areas for multiplicity, 156 10.9.1    Using different statistical tests, 156 10.9.2    Different analysis sets, 156 10.9.3    Pre-planning, 157 11           Non-parametric and related methods, 158 11.1       Assumptions underlying the t-tests and their extensions, 158 11.2       Homogeneity of variance, 158 11.3       The assumption of normality, 159 11.4       Non-normality and transformations, 161 11.5       Non-parametric tests, 164 11.5.1    The Mann–Whitney U-test, 164 11.5.2    The Wilcoxon signed rank test, 166 11.5.3    General comments, 167 11.6       Advantages and disadvantages of non-parametric methods, 168 11.7       Outliers, 169 12           Equivalence and non-inferiority, 170 12.1       Demonstrating similarity, 170 12.2       Confidence intervals for equivalence, 172 12.3       Confidence intervals for non-inferiority, 173 12.4       A p-value approach, 174 12.5       Assay sensitivity, 176 12.6       Analysis sets, 178 12.7       The choice of Δ, 179 12.7.1    Bioequivalence, 179 12.7.2    Therapeutic equivalence, 180 12.7.3    Non-inferiority, 180 12.7.4    The 10 per cent rule for cure rates, 182 12.7.5    The synthesis method, 183 12.8       Biocreep and constancy, 184 12.9       Sample size calculations, 184 12.10     Switching between non-inferiority and superiority, 186 13           The analysis of survival data, 189 13.1       Time-to-event data and censoring, 189 13.2       Kaplan-Meier curves, 190 13.2.1    Plotting Kaplan-Meier curves, 190 13.2.2    Event rates and relative risk, 192 13.2.3    Median event times, 192 13.3       Treatment comparisons, 193 13.4       The hazard ratio, 196 13.4.1    The hazard rate, 196 13.4.2    Constant hazard ratio, 197 13.4.3    Non-constant hazard ratio, 197 13.4.4    Link to survival curves, 198 13.4.5    Calculating Kaplan-Meier curves, 199 13.5       Adjusted analyses, 199 13.5.1    Stratified methods, 200 13.5.2    Proportional hazards regression, 200 13.5.3    Accelerated failure time model, 201 13.6       Independent censoring, 202 13.7       Sample size calculations, 203 14           Interim analysis and data monitoring committees, 205 14.1       Stopping rules for interim analysis, 205 14.2       Stopping for efficacy and futility, 206 14.2.1    Efficacy, 206 14.2.2    Futility and conditional power, 207 14.2.3    Some practical issues, 208 14.2.4    Analyses following completion of recruitment, 209 14.3       Monitoring safety, 210 14.4       Data monitoring committees, 211 14.4.1    Introduction and responsibilities, 211 14.4.2    Structure and process, 212 14.4.3    Meetings and recommendations, 214 15           Bayesian statistics, 215 15.1       Introduction, 215 15.2       Prior and posterior distributions, 215 15.2.1    Prior beliefs, 215 15.2.2    Prior to posterior, 217 15.2.3    Bayes theorem, 217 15.3       Bayesian inference, 219 15.3.1    Frequentist methods, 219 15.3.2    Posterior probabilities, 219 15.3.3    Credible intervals, 220 15.4       Case study, 221 15.5       History and regulatory acceptance, 222 15.6       Discussion, 224 16           Adaptive designs, 225 16.1       What are adaptive designs?, 225 16.1.1    Advantages and drawbacks, 225 16.1.2    Restricted adaptations, 226 16.1.3    Flexible adaptations, 227 16.2       Minimising bias, 228 16.2.1    Control of type I error, 228 16.2.2    Estimation, 229 16.2.3    Behavioural issues, 230 16.2.4    Exploratory trials, 232 16.3       Unblinded sample size re-estimation, 232 16.3.1    Product of p-values, 232 16.3.2    Weighting the two parts of the trial, 233 16.3.3    Rationale, 234 16.4       Seamless phase II/III studies, 234 16.4.1    Standard framework, 234 16.4.2    Aspects of the p-value calculation, 235 16.4.3    Logistical challenges, 236 16.5       Other types of adaptation, 236 16.5.1    Changing the primary endpoint, 236 16.5.2    Focusing on a sub-population, 237 16.5.3    Dropping the placebo arm in a non-inferiority trial, 237 16.6       Further regulatory considerations, 238 16.6.1    Impact on power, 238 16.6.2    Non-standard experimental settings, 239 17           Observational studies, 241 17.1       Introduction, 241 17.1.1    Non-randomised comparisons, 241 17.1.2    Study types, 241 17.1.3    Sources of bias, 243 17.1.4    An empirical investigation, 244 17.1.5    Selection bias in concurrently controlled studies: An empirical evaluation, 245 17.1.6    Selection bias in historically controlled studies: An empirical evaluation, 246 17.1.7    Some conclusions, 246 17.2       Guidance on design, conduct and analysis, 247 17.2.1    Regulatory guidance, 247 17.2.2    Strengthening the Reporting of Observational Studies in Epidemiology, 248 17.3       Evaluating and adjusting for selection bias, 249 17.3.1    Baseline balance, 249 17.3.2    Adjusting for imbalances using stratification and analysis of covariance, 250 17.3.3    Propensity scores, 250 17.3.4    Different methods for adjustment: An empirical evaluation, 253 17.3.5    Some conclusions, 256 17.4       Case–control studies, 257 17.4.1    Background, 257 17.4.2    Odds ratio and Relative risk, 259 18           Meta-analysis, 261 18.1       Definition, 261 18.2       Objectives, 263 18.3       Statistical methodology, 264 18.3.1    Methods for combination, 264 18.3.2    Confidence intervals, 265 18.3.3    Fixed and random effects, 265 18.3.4    Graphical methods, 266 18.3.5    Detecting heterogeneity, 266 18.3.6    Robustness, 269 18.3.7    Rare events, 269 18.3.8    Individual patient data, 269 18.4       Case study, 270 18.5       Ensuring scientific validity, 271 18.5.1    Planning, 271 18.5.2    Assessing the risk of bias, 273 18.5.3    Publication bias and funnel plots, 273 18.5.4    Preferred Reporting Items for Systematic Reviews and Meta-Analyses, 275 18.6       Further regulatory aspects, 275 19           Methods for the safety analysis and safety monitoring, 277 19.1       Introduction, 277 19.1.1    Methods for safety data, 277 19.1.2    The rule of three, 278 19.2       Routine evaluation in clinical studies, 279 19.2.1    Types of data, 280 19.2.2    Adverse events, 281 19.2.3    Laboratory data, 284 19.2.4    ECG data, 287 19.2.5    Vital signs, 288 19.2.6    Safety summary across trials, 288 19.2.7    Specific safety studies, 289 19.3       Data monitoring committees, 289 19.4       Assessing benefit–risk, 290 19.4.1    Current approaches, 290 19.4.2    Multi-criteria decision analysis, 291 19.4.3    Quality-Adjusted Time without Symptoms or Toxicity, 297 19.5       Pharmacovigilance, 299 19.5.1    Post-approval safety monitoring, 299 19.5.2    Proportional reporting ratios, 300 19.5.3    Bayesian shrinkage, 302 20           Diagnosis, 304 20.1       Introduction, 304 20.2       Measures of diagnostic performance, 304 20.2.1    Sensitivity and specificity, 304 20.2.2    Positive and negative predictive value, 305 20.2.3    False positive and false negative rates, 306 20.2.4    Prevalence, 306 20.2.5    Likelihood ratio, 307 20.2.6    Predictive accuracy, 307 20.2.7    Choosing the correct cut-point, 307 20.3       Receiver operating characteristic curves, 308 20.3.1    Receiver operating characteristic, 308 20.3.2    Comparing ROC curves, 309 20.4       Diagnostic performance using regression models, 310 20.5       Aspects of trial design for diagnostic agents, 312 20.6       Assessing agreement, 313 20.6.1    The kappa statistic, 313 20.6.2    Other applications for kappa, 314 21           The role of statistics and statisticians, 316 21.1       The importance of statistical thinking at the design stage, 316 21.2       Regulatory guidelines, 317 21.3       The statistics process, 321 21.3.1    The statistical methods section of the protocol, 321 21.3.2    The statistical analysis plan, 322 21.3.3    The data validation plan, 322 21.3.4    The blind review, 322 21.3.5    Statistical analysis, 323 21.3.6    Reporting the analysis, 323 21.3.7    Pre-planning, 324 21.3.8    Sensitivity and robustness, 326 21.4       The regulatory submission, 327 21.5       Publications and presentations, 328 References, 331 Index, 339

Richard Kay, PhD is a Visiting Professor at the School of Pharmacy and Pharmaceutical Medicine, Cardiff University, UK, and a longtime statistical consultant for the pharmaceutical industry. He provides consultancy and training services for pharmaceutical companies and research institutions.

See Also