WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

$317.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Elsevier - Health Sciences Division
03 July 2023
State Estimation Strategies in Lithium-ion Battery Management Systems presents key technologies and methodologies in modeling and monitoring charge, energy, power and health of lithium-ion batteries. Sections introduce core state parameters of the lithium-ion battery, reviewing existing research and the significance of the prediction of core state parameters of the lithium-ion battery and analyzing the advantages and disadvantages of prediction methods of core state parameters. Characteristic analysis and aging characteristics are then discussed. Subsequent chapters elaborate, in detail, on modeling and parameter identification methods and advanced estimation techniques in different application scenarios.

Offering a systematic approach supported by examples, process diagrams, flowcharts, algorithms, and other visual elements, this book is of interest to researchers, advanced students and scientists in energy storage, control, automation, electrical engineering, power systems, materials science and chemical engineering, as well as to engineers, R&D professionals, and other industry personnel.
By:   , , , , , , , , , , , , , ,
Imprint:   Elsevier - Health Sciences Division
Country of Publication:   United States
Dimensions:   Height: 229mm,  Width: 152mm, 
Weight:   590g
ISBN:   9780443161605
ISBN 10:   0443161607
Pages:   376
Publication Date:  
Audience:   College/higher education ,  Primary
Format:   Paperback
Publisher's Status:   Active

Kailong Liu is a Professor at the School of Control Science and Engineering, Shandong University, China. His research experience lies at the intersection of AI and electrochemical energy storage applications, especially data science in battery management. His current research is focusing on the development of AI strategies for battery applications. Yujie Wang is an associate professor at the Department of Automation, University of Science and Technology of China. His research interests include new energy vehicle technology, battery safety management, digital twin and AI application in energy system. He received his Ph.D. degree in Control science and engineering from the University of Science and Technology of China in 2017. He has co-authored over 60 SCI journal papers on battery-related topics. His research interests include energy-saving and new energy vehicle technology, complex system modeling, simulation and control, fuel cell system management, and optimal control. Daniel-Ioan Stroe Ph.D received the Dipl.-Ing. degree in automatics from the Transylvania University of Brasov, Brasov, Romania, in 2008, and the M.Sc. degree in wind power systems and the Ph.D. degree in lifetime modelling of lithium-ion batteries from Aalborg University, Aalborg, Denmark, in 2010 and 2014, respectively. He is currently an Assistant Professor with the Department of Energy Technology, Aalborg University. He was a Visiting Researcher at RWTH Aachen, Germany, in 2013. He has coauthored more than 70 journals and conference papers. His current research interests include energy storage systems for grid and e-mobility, Lithium-based batteries testing and modelling, and lifetime estimation of lithium-ion batteries. Carlos Fernandez is a senior lecturer at Robert Gordon University, Scotland, UK. He received his Ph.D. in Electrocatalytic Reactions from The University of Hull and then worked as a Consultant Technologist in Hull and a post-doctoral position in Manchester. His research interests include Analytical Chemistry, Sensors and Materials, and Renewable Energy. Josep M. Guerrero is a full professor with AAU Energy, Aalborg University, Denmark. He is the director of the Center for Research on Microgrids (CROM). He has published more than 800 journal articles in the fields of microgrids and renewable energy systems, which have been cited more than 80,000 times. His research interests focus on different microgrid aspects, including hierarchical and cooperative control, and energy management systems. Shunli Wang is a professor at the Southwest University of Science and Technology, China. He is an authoritative expert in the field of new energy research. He is the head of DTlab, modeling, and state estimation strategy research for lithium-ion batteries. He has undertaken more than 40 projects and 30 patents, published more than 100 research papers as well as won 20 awards such as the Young Scholar, and Science & Technology Progress Awards.

See Also