WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

Propellants and Explosives

Thermochemical Aspects of Combustion

Naminosuke Kubota (Mitsubishi Electric Corporation, Kamakura City, Japan)

$324.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Blackwell Verlag GmbH
06 May 2015
Propellants and Explosives Explosives and propellants are termed energetic materials for containing considerable chemical energy which can be converted into rapid expansion. In contrast to simple burning of a fuel, explosives and propellants are self-contained and do not need external supply of oxygen via air. Since their energy content thus inherently creates the risk of accidental triggering of the explosive reaction, proper synthesis, formulation, and handling during production and use are of utmost importance for safety and necessitate specialist knowledge on energetic materials, their characteristics, handling, and applications.

Now in its third edition, the classic on the thermochemical aspects of the combustion of propellants and explosives is completely revised and updated and includes green propellants as new topic. The combustion processes of typical energetic crystalline and polymeric materials and various types of propellants and pyrolants are presented to provide an informative, generalized approach for the understanding of the combustion mechanisms of those materials. The first half of the book represents an introductory text on pyrodynamics, describing fundamental aspects of the combustion of energetic materials. The second half highlights applications of energetic materials as propellants, explosives and pyrolants with focus on phenomena occurring in rocket motors. In addition, the appendix gives a brief overview of the fundamentals of aerodynamics and heat transfer, which is a prerequisite for the study of pyrodynamics.

A detailed reference for readers interested in rocketry or explosives technology.
By:  
Imprint:   Blackwell Verlag GmbH
Country of Publication:   Germany
Edition:   3rd edition
Dimensions:   Height: 252mm,  Width: 175mm,  Spine: 33mm
Weight:   1.334kg
ISBN:   9783527331789
ISBN 10:   3527331786
Pages:   560
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
Preface xix Preface to the Second Edition xxi Preface to the First Edition xxiii 1 Foundations of Pyrodynamics 1 1.1 Heat and Pressure 1 1.1.1 First Law of Thermodynamics 1 1.1.2 Specific Heat 2 1.1.3 Entropy Change 4 1.2 Thermodynamics in a Flow Field 5 1.2.1 One-Dimensional Steady-State Flow 5 1.2.1.1 Sonic Velocity and Mach Number 5 1.2.1.2 Conservation Equations in a Flow Field 6 1.2.1.3 Stagnation Point 6 1.2.2 Formation of Shock Waves 7 1.2.3 Supersonic Nozzle Flow 10 1.3 Formation of Propulsive Forces 12 1.3.1 Momentum Change and Thrust 12 1.3.2 Rocket Propulsion 14 1.3.2.1 Thrust Coefficient 15 1.3.2.2 Characteristic Velocity 15 1.3.2.3 Specific Impulse 16 1.3.3 Gun Propulsion 17 1.3.3.1 Thermochemical Process of Gun Propulsion 17 1.3.3.2 Internal Ballistics 18 1.4 Formation of Destructive Forces 20 1.4.1 Pressure and Shock Wave 20 1.4.2 Shock Wave Propagation and Reflection in Solid Materials 21 References 21 2 Thermochemistry of Combustion 23 2.1 Generation of Heat Energy 23 2.1.1 Chemical Bond Energy 23 2.1.2 Heat of Formation and Heat of Explosion 24 2.1.3 Thermal Equilibrium 25 2.2 Adiabatic Flame Temperature 26 2.3 Chemical Reaction 31 2.3.1 Thermal Dissociation 31 2.3.2 Reaction Rate 31 2.4 Evaluation of Chemical Energy 32 2.4.1 Heats of Formation of Reactants and Products 33 2.4.2 Oxygen Balance 33 2.4.3 Thermodynamic Energy 36 References 39 3 Combustion Wave Propagation 41 3.1 Combustion Reactions 41 3.1.1 Ignition and Combustion 41 3.1.2 Premixed and Diffusion Flames 42 3.1.3 Laminar and Turbulent Flames 42 3.2 Combustion Wave of a Premixed Gas 43 3.2.1 Governing Equations for the Combustion Wave 43 3.2.2 Rankine–Hugoniot Relationships 44 3.2.3 Chapman–Jouguet Points 46 3.3 Structures of Combustion Waves 49 3.3.1 Detonation Wave 49 3.3.2 Deflagration Wave 52 3.4 Ignition Reactions 54 3.4.1 The Ignition Process 54 3.4.2 Thermal Theory of Ignition 54 3.4.3 Flammability Limit 55 3.5 Combustion Waves of Energetic Materials 56 3.5.1 Thermal Theory of Burning Rate 56 3.5.1.1 Thermal Model of Combustion Wave Structure 56 3.5.1.2 Thermal Structure in the Condensed Phase 59 3.5.1.3 Thermal Structure in the Gas Phase 59 3.5.1.4 Burning Rate Model 62 3.5.2 Flame Stand-Off Distance 64 3.5.3 Burning Rate Characteristics of Energetic Materials 66 3.5.3.1 Pressure Exponent of Burning Rate 66 3.5.3.2 Temperature Sensitivity of Burning Rate 66 3.5.4 Analysis of Temperature Sensitivity of Burning Rate 66 3.5.5 Chemical Reaction Rate in Combustion Wave 69 References 71 4 Energetics of Propellants and Explosives 73 4.1 Crystalline Materials 73 4.1.1 Physicochemical Properties of Crystalline Materials 73 4.1.2 Perchlorates 76 4.1.2.1 Ammonium Perchlorate 77 4.1.2.2 Nitronium Perchlorate 77 4.1.2.3 Potassium Perchlorate 78 4.1.3 Nitrates 78 4.1.3.1 Ammonium Nitrate 78 4.1.3.2 Potassium Nitrate and Sodium Nitrate 79 4.1.3.3 Pentaerythrol Tetranitrate 79 4.1.3.4 Triaminoguanidine Nitrate 80 4.1.4 Nitro Compounds 80 4.1.5 Nitramines 80 4.2 Polymeric Materials 82 4.2.1 Physicochemical Properties of Polymeric Materials 82 4.2.2 Nitrate Esters 82 4.2.3 Inert Polymers 84 4.2.4 Azide Polymers 87 4.2.4.1 GAP 88 4.2.4.2 BAMO 90 4.3 Classification of Propellants and Explosives 91 4.4 Formulation of Propellants 94 4.5 Nitropolymer Propellants 96 4.5.1 Single-Base Propellants 96 4.5.2 Double-Base Propellants 96 4.5.2.1 NC–NG Propellants 97 4.5.2.2 NC–TMETN Propellants 99 4.5.2.3 Nitro-Azide Polymer Propellants 99 4.5.2.4 Chemical Materials of Double-Base Propellants 100 4.6 Composite Propellants 100 4.6.1 AP Composite Propellants 101 4.6.1.1 AP–HTPB Propellants 101 4.6.1.2 AP–GAP Propellants 103 4.6.1.3 Chemical Materials of AP Composite Propellants 104 4.6.2 AN Composite Propellants 104 4.6.3 Nitramine Composite Propellants 104 4.6.4 HNF Composite Propellants 106 4.6.5 TAGN Composite Propellants 108 4.7 Composite-Modified Double-Base Propellants 108 4.7.1 AP–CMDB Propellants 110 4.7.2 Nitramine CMDB Propellants 110 4.7.3 Triple-Base Propellants 112 4.8 Black Powder 113 4.9 Formulation of Explosives 114 4.9.1 Industrial Explosives 114 4.9.1.1 ANFO Explosives 114 4.9.1.2 Slurry Explosives 114 4.9.2 Military Explosives 115 4.9.2.1 TNT-Based Explosives 115 4.9.2.2 Plastic-Bonded Explosives 115 References 116 5 Combustion of Crystalline and Polymeric Materials 119 5.1 Combustion of Crystalline Materials 119 5.1.1 Ammonium Perchlorate (AP) 119 5.1.1.1 Thermal Decomposition 119 5.1.1.2 Burning Rate 120 5.1.1.3 Combustion Wave Structure 121 5.1.2 Ammonium Nitrate (AN) 121 5.1.2.1 Thermal Decomposition 121 5.1.3 HMX 122 5.1.3.1 Thermal Decomposition 122 5.1.3.2 Burning Rate 122 5.1.3.3 Gas-Phase Reaction 123 5.1.3.4 Combustion Wave Structure and Heat Transfer 124 5.1.4 Triaminoguanidine Nitrate (TAGN) 126 5.1.4.1 Thermal Decomposition 126 5.1.4.2 Burning Rate 130 5.1.4.3 Combustion Wave Structure and Heat Transfer 130 5.1.5 ADN (Ammonium Dinitramide) 132 5.1.6 HNF (Hydrazinium Nitroformate) 134 5.2 Combustion of Polymeric Materials 135 5.2.1 Nitrate Esters 135 5.2.1.1 Decomposition of Methyl Nitrate 136 5.2.1.2 Decomposition of Ethyl Nitrate 136 5.2.1.3 Overall Decomposition Process of Nitrate Esters 137 5.2.1.4 Gas-Phase Reactions of NO2 and NO 137 5.2.2 Glycidyl Azide Polymer (GAP) 139 5.2.2.1 Thermal Decomposition and Burning Rate 139 5.2.2.2 Combustion Wave Structure 142 5.2.3 Bis-azide Methyl Oxetane (BAMO) 142 5.2.3.1 Thermal Decomposition and Burning Rate 142 5.2.3.2 Combustion Wave Structure and Heat Transfer 146 References 148 6 Combustion of Double-Base Propellants 151 6.1 Combustion of NC-NG Propellants 151 6.1.1 Burning Rate Characteristics 151 6.1.2 Combustion Wave Structure 152 6.1.2.1 Gas-Phase Reaction Zones 156 6.1.2.2 A Simplified Reaction Model in Fizz Zone 157 6.1.3 Burning Rate Model 160 6.1.3.1 Model for Heat Feedback from the Gas Phase to the Condensed Phase 160 6.1.3.2 Burning Rate Calculated by a Simplified Gas-Phase Model 160 6.1.4 Energetics of the Gas Phase and Burning Rate 162 6.1.5 Temperature Sensitivity of Burning Rate 168 6.2 Combustion of NC-TMETN Propellants 171 6.2.1 Burning Rate Characteristics 171 6.2.2 Combustion Wave Structure 173 6.3 Combustion of Nitro-Azide Propellants 173 6.3.1 Burning Rate Characteristics 173 6.3.2 Combustion Wave Structure 174 6.4 Catalyzed Double-Base Propellants 176 6.4.1 Super-Rate, Plateau, and Mesa Burning 176 6.4.2 Effects of Lead Catalysts 177 6.4.2.1 Burning Rate Behavior of Catalyzed Liquid Nitrate Esters 177 6.4.2.2 Effect of Lead Compounds on Gas-Phase Reactions 178 6.4.3 Combustion of Catalyzed Double-Base Propellants 179 6.4.3.1 Burning Rate Characteristics 179 6.4.3.2 Reaction Mechanism in the Dark Zone 182 6.4.3.3 Reaction Mechanism in the Fizz Zone Structure 184 6.4.4 Combustion Models of Super-Rate, Plateau, and Mesa Burning 184 6.4.5 LiF-Catalyzed Double-Base Propellants 187 6.4.6 Ni-Catalyzed Double-Base Propellants 189 6.4.7 Suppression of Super-Rate and Plateau Burning 191 References 193 7 Combustion of Composite Propellants 195 7.1 AP Composite Propellants 195 7.1.1 Combustion Wave Structure 195 7.1.1.1 Premixed Flame of AP Particles and Diffusion Flame 195 7.1.1.2 Burning Rate Model of Granular Diffusion Theory 199 7.1.1.3 Combustion Wave Structure of Oxidizer-Rich AP Propellants 200 7.1.2 Burning Rate Characteristics 203 7.1.2.1 Effect of AP Particle Size 203 7.1.2.2 Effect of the Binder 205 7.1.2.3 Temperature Sensitivity 208 7.1.3 Catalyzed AP Composite Propellants 210 7.1.3.1 Positive Catalysts 211 7.1.3.2 LiF Negative Catalyst 213 7.1.3.3 SrCO3 Negative Catalyst 216 7.2 Nitramine Composite Propellants 219 7.2.1 Burning Rate Characteristics 220 7.2.1.1 Effect of Nitramine Particle Size 220 7.2.1.2 Effect of Binder 220 7.2.2 Combustion Wave Structure 221 7.2.3 HMX-GAP Propellants 224 7.2.3.1 Physicochemical Properties of Propellants 224 7.2.3.2 Burning Rate and Combustion Wave Structure 224 7.2.4 Catalyzed Nitramine Composite Propellants 227 7.2.4.1 Super-Rate Burning of HMX Composite Propellants 227 7.2.4.2 Super-Rate Burning of HMX-GAP Propellants 228 7.2.4.3 LiF Catalysts for Super-Rate Burning 230 7.2.4.4 Catalyst Action of LiF on Combustion Wave 232 7.3 AP-Nitramine Composite Propellants 235 7.3.1 Theoretical Performance 235 7.3.2 Burning Rate 236 7.3.2.1 Effects of AP/RDX Mixture Ratio and Particle Size 236 7.3.2.2 Effect of Binder 238 7.4 TAGN-GAP Composite Propellants 241 7.4.1 Physicochemical Characteristics 241 7.4.2 Burning Rate and Combustion Wave Structure 242 7.5 AN-Azide Polymer Composite Propellants 243 7.5.1 AN-GAP Composite Propellants 243 7.5.2 AN-(BAMO-AMMO)-HMX Composite Propellants 246 7.6 AP-GAP Composite Propellants 247 7.7 ADN, HNF, and HNIW Composite Propellants 249 References 250 8 Combustion of CMDB Propellants 253 8.1 Characteristics of CMDB Propellants 253 8.2 AP-CMDB Propellants 253 8.2.1 Flame Structure and Combustion Mode 253 8.2.2 Burning Rate Models 255 8.3 Nitramine-CMDB Propellants 258 8.3.1 Flame Structure and Combustion Mode 258 8.3.2 Burning Rate Characteristics 261 8.3.3 Thermal Wave Structure 262 8.3.4 Burning Rate Model 267 8.4 Plateau Burning of Catalyzed HMX-CMDB Propellants 269 8.4.1 Burning Rate Characteristics 269 8.4.2 Combustion Wave Structure 270 8.4.2.1 Flame Stand-Off Distance 270 8.4.2.2 Catalyst Activity 271 8.4.2.3 Heat Transfer at the Burning Surface 273 References 275 9 Combustion of Explosives 277 9.1 Detonation Characteristics 277 9.1.1 Detonation Velocity and Pressure 277 9.1.2 Estimation of Detonation Velocity of CHNO Explosives 279 9.1.3 Equation of State for Detonation of Explosives 280 9.2 Density and Detonation Velocity 280 9.2.1 Energetic Explosive Materials 280 9.2.2 Industrial Explosives 281 9.2.2.1 ANFO Explosives 282 9.2.2.2 Slurry and Emulsion Explosives 282 9.2.3 Military Explosives 283 9.2.3.1 TNT-Based Explosives 283 9.2.3.2 Plastic-Bonded Explosives 284 9.3 Critical Diameter 285 9.4 Applications of Detonation Phenomena 285 9.4.1 Formation of a Flat Detonation Wave 285 9.4.2 Munroe Effect 287 9.4.3 Hopkinnson Effect 288 9.4.4 Underwater Explosion 289 References 292 10 Formation of Energetic Pyrolants 293 10.1 Differentiation of Propellants, Explosives, and Pyrolants 293 10.1.1 Thermodynamic Energy of Pyrolants 294 10.1.2 Thermodynamic Properties 295 10.2 Energetics of Pyrolants 296 10.2.1 Reactants and Products 296 10.2.2 Generation of Heat and Products 297 10.3 Energetics of Elements 297 10.3.1 Physicochemical Properties of Elements 297 10.3.2 Heats of Combustion of Elements 299 10.4 Selection Criteria of Chemicals 300 10.4.1 Characteristics of Pyrolants 300 10.4.2 Physicochemical Properties of Pyrolants 304 10.4.3 Formulations of Pyrolants 306 10.5 Oxidizer Components 309 10.5.1 Metallic Crystalline Oxidizers 310 10.5.1.1 Potassium Nitrate 310 10.5.1.2 Potassium Perchlorate 311 10.5.1.3 Potassium Chlorate 311 10.5.1.4 Barium Nitrate 311 10.5.1.5 Barium Chlorate 311 10.5.1.6 Strontium Nitrate 312 10.5.1.7 Sodium Nitrate 312 10.5.2 Metallic Oxides 312 10.5.3 Metallic Sulfides 313 10.5.4 Fluorine Compounds 313 10.6 Fuel Components 314 10.6.1 Metallic Fuels 314 10.6.2 Nonmetallic Solid Fuels 316 10.6.2.1 Boron 316 10.6.2.2 Carbon 316 10.6.2.3 Silicon 317 10.6.2.4 Sulfur 317 10.6.3 Polymeric Fuels 317 10.6.3.1 Nitropolymers 317 10.6.3.2 Polymeric Azides 318 10.6.3.3 Hydrocarbon Polymers 318 10.7 Metal Azides 318 References 319 11 Combustion Propagation of Pyrolants 321 11.1 Physicochemical Structures of Combustion Waves 321 11.1.1 Thermal Decomposition and Heat Release Process 321 11.1.2 Homogeneous Pyrolants 322 11.1.3 Heterogeneous Pyrolants 322 11.1.4 Pyrolants as Igniters 323 11.2 Combustion of Metal Particles 324 11.2.1 Oxidation and Combustion Processes 325 11.2.1.1 Aluminum Particles 325 11.2.1.2 Magnesium Particles 325 11.2.1.3 Boron Particles 326 11.2.1.4 Zirconium Particles 326 11.3 Black Powder 326 11.3.1 Physicochemical Properties 326 11.3.2 Reaction Process and Burning Rate 327 11.4 Li–SF6 Pyrolants 327 11.4.1 Reactivity of Lithium 327 11.4.2 Chemical Characteristics of SF6 328 11.5 Zr Pyrolants 328 11.5.1 Reactivity with BaCrO4 328 11.5.2 Reactivity with Fe2O3 329 11.6 Mg-Tf Pyrolants 329 11.6.1 Thermochemical Properties and Energetics 329 11.6.2 Reactivity of Mg and Tf 331 11.6.3 Burning Rate Characteristics 331 11.6.4 Combustion Wave Structure 334 11.7 B - KNO3 Pyrolants 336 11.7.1 Thermochemical Properties and Energetics 336 11.7.2 Burning Rate Characteristics 336 11.8 Ti - KNO3 and Zr - KNO3 Pyrolants 338 11.8.1 Oxidation Process 338 11.8.2 Burning Rate Characteristics 338 11.9 Metal-GAP Pyrolants 339 11.9.1 Flame Temperature and Combustion Products 339 11.9.2 Thermal Decomposition Process 340 11.9.3 Burning Rate Characteristics 340 11.10 Ti-C Pyrolants 341 11.10.1 Thermochemical Properties of Titanium and Carbon 341 11.10.2 Reactivity of Tf with Ti-C Pyrolants 341 11.10.3 Burning Rate Characteristics 342 11.11 NaN3 Pyrolants 342 11.11.1 Thermochemical Properties of NaN3 Pyrolants 342 11.11.2 NaN3 Pyrolant Formulations 343 11.11.3 Burning Rate Characteristics 344 11.11.4 Combustion Residue Analysis 344 11.12 GAP-AN Pyrolants 345 11.12.1 Thermochemical Characteristics 345 11.12.2 Burning Rate Characteristics 345 11.12.3 Combustion Wave Structure and Heat Transfer 345 11.13 Nitramine Pyrolants 346 11.13.1 Physicochemical Properties 346 11.13.2 Combustion Wave Structures 346 11.14 B-AP Pyrolants 347 11.14.1 Thermochemical Characteristics 347 11.14.2 Burning Rate Characteristics 348 11.14.3 Burning Rate Analysis 350 11.14.4 Site and Mode of Boron Combustion in the Combustion Wave 352 11.15 Friction Sensitivity of Pyrolants 353 11.15.1 Definition of Friction Energy 353 11.15.2 Effect of Organic Iron and Boron Compounds 354 References 357 12 Emission from Combustion Products 359 12.1 Fundamentals of Light Emission 359 12.1.1 Nature of Light Emission 359 12.1.2 Black-Body Radiation 360 12.1.3 Emission and Absorption by Gases 361 12.2 Light Emission from Flames 362 12.2.1 Emission from Gaseous Flames 362 12.2.2 Continuous Emission from Hot Particles 362 12.2.3 Colored Light Emitters 362 12.3 Smoke Emission 363 12.3.1 Physical Smoke and Chemical Smoke 363 12.3.2 White Smoke Emitters 364 12.3.3 Black Smoke Emitters 365 12.4 Smokeless Pyrolants 366 12.4.1 Nitropolymer Pyrolants 366 12.4.2 Ammonium Nitrate Pyrolants 367 12.5 Smoke Characteristics of Pyrolants 368 12.6 Smoke and Flame Characteristics of Rocket Motors 374 12.6.1 Smokeless and Reduced Smoke 374 12.6.2 Suppression of Rocket Plume 376 12.6.2.1 Effect of Chemical Reaction Suppression 379 12.6.2.2 Effect of Nozzle Expansion 380 12.7 HCl Reduction from AP Propellants 383 12.7.1 Background of HCl Reduction 383 12.7.2 Reduction of HCl by the Formation of Metal Chlorides 385 12.8 Reduction of Infrared Emission from Combustion Products 387 12.9 Green Propellants 388 12.9.1 AN-Composite Propellants 389 12.9.2 ADN- and HNF-Composite Propellants 390 12.9.3 Nitramine Composite Propellants 390 12.9.4 TAGN-GAP Composite Propellants 391 12.9.5 NP Propellants 391 References 392 13 Transient Combustion of Propellants and Pyrolants 393 13.1 Ignition Transient 393 13.1.1 Convective and Conductive Ignition 393 13.1.2 Radiative Ignition 396 13.2 Ignition for Combustion 398 13.2.1 Description of the Ignition Process 398 13.2.2 Ignition Process 400 13.3 Erosive Burning Phenomena 402 13.3.1 Threshold Velocity 402 13.3.2 Effect of Cross-Flow 404 13.3.3 Heat Transfer through a Boundary Layer 404 13.3.4 Determination of Lenoir–Robilard Parameters 406 13.4 Combustion Instability 409 13.4.1 T∗ Combustion Instability 409 13.4.2 L∗ Combustion Instability 411 13.4.3 Acoustic Combustion Instability 414 13.4.3.1 Nature of Oscillatory Combustion 414 13.4.3.2 Combustion Instability Test 415 13.4.3.3 Model for Suppression of Combustion Instability 423 13.5 Combustion under Acceleration 424 13.5.1 Burning Rate Augmentation 424 13.5.2 Effect of Aluminum Particles 425 13.6 Wired Propellant Burning 426 13.6.1 Heat-Transfer Process 426 13.6.2 Burning-Rate Augmentation 428 References 432 14 Rocket Thrust Modulation 435 14.1 Combustion Phenomena in a Rocket Motor 435 14.1.1 Thrust and Burning Time 435 14.1.2 Combustion Efficiency in a Rocket Motor 437 14.1.3 Stability Criteria for a Rocket Motor 440 14.1.4 Temperature Sensitivity of Pressure in a Rocket Motor 442 14.2 Dual-Thrust Motor 444 14.2.1 Principles of a Dual-Thrust Motor 444 14.2.2 Single-Grain Dual-Thrust Motor 445 14.2.3 Dual-Grain Dual-Thrust Motor 446 14.2.3.1 Mass Generation Rate and Mass Discharge Rate 446 14.2.3.2 Determination of Design Parameters 448 14.2.4 Thrust Modulator 451 14.3 Pulse Rocket Motor 451 14.3.1 Design Concept of Pulse Motor 451 14.3.2 Operational Flight Design of Pulse Motor 452 14.3.3 Combustion Test Results of a Two-Pulse Rocket Motor 454 14.4 Erosive Burning in a Rocket Motor 455 14.4.1 Head-End Pressure 455 14.4.2 Determination of Erosive-Burning Effect 456 14.5 Nozzleless Rocket Motor 459 14.5.1 Principles of the Nozzleless Rocket Motor 459 14.5.2 Flow Characteristics in a Nozzleless Rocket 460 14.5.3 Combustion Performance Analysis 462 14.6 Gas-Hybrid Rockets 463 14.6.1 Principles of the Gas-Hybrid Rocket 463 14.6.2 Thrust and Combustion Pressure 466 14.6.3 Pyrolants Used as Gas Generators 466 References 469 15 Ducted Rocket Propulsion 471 15.1 Fundamentals of Ducted Rocket Propulsion 471 15.1.1 Solid Rockets, Liquid Ramjets, and Ducted Rockets 471 15.1.2 Structure and Operational Process 472 15.2 Design Parameters of Ducted Rockets 473 15.2.1 Thrust and Drag 473 15.2.2 Determination of Design Parameters 474 15.2.3 Optimum Flight Envelope 475 15.2.4 Specific Impulse of Flight Mach Number 476 15.3 Performance Analysis of Ducted Rockets 477 15.3.1 Fuel-Flow System 477 15.3.1.1 Non-choked Fuel-Flow System 478 15.3.1.2 Fixed Fuel-Flow System 478 15.3.1.3 Variable Fuel-Flow System 478 15.4 Principle of the Variable Fuel-Flow Ducted Rocket 479 15.4.1 Optimization of Energy Conversion 479 15.4.2 Control of Fuel-Flow Rate 479 15.5 Energetics of Gas-Generating Pyrolants 482 15.5.1 Required Physicochemical Properties 482 15.5.2 Burning Rate Characteristics of Gas-Generating Pyrolants 483 15.5.2.1 Burning Rate and Pressure Exponent 483 15.5.2.2 Wired Gas-Generating Pyrolants 484 15.5.3 Pyrolants for Variable Fuel-Flow Ducted Rockets 485 15.5.4 GAP Pyrolants 486 15.5.5 Metal Particles as Fuel Components 487 15.5.6 GAP-B Pyrolants 488 15.5.7 AP Composite Pyrolants 490 15.5.8 Effect of Metal Particles on Combustion Stability 490 15.6 Combustion Tests for Ducted Rockets 491 15.6.1 Combustion Test Facility 491 15.6.2 Combustion of Variable-Flow Gas Generator 493 15.6.3 Combustion Efficiency of Multiport Air Intake 497 References 500 A Appendix A: List of Abbreviations of Energetic Materials 503 B Appendix B: Mass and Heat Transfer in a Combustion Wave 505 B.1 Conservation Equations at a Steady State in a One-Dimensional Flow Field 505 B.1.1 Mass Conservation Equation 505 B.1.2 Momentum Conservation Equation 506 B.1.3 Energy Conservation Equation 506 B.1.4 Conservation Equations of Chemical Species 507 B.2 Generalized Conservation Equations at a Steady State in a Flow Field 508 C Appendix C: Shock Wave Propagation in a Two-Dimensional Flow Field 509 C.1 Oblique Shock Wave 509 C.2 Expansion Wave 513 C.3 Diamond Shock Wave 514 References 515 D Appendix D: Supersonic Air Intake 517 D.1 Compression Characteristics of Diffusers 517 D.1.1 Principles of a Diffuser 517 D.1.2 Pressure Recovery 518 D.2 Air Intake System 521 D.2.1 External Compression System 521 D.2.2 Internal Compression System 522 D.2.3 Air Intake Design 522 References 524 E Appendix E: Measurements of Burning Rate and Combustion Wave Structure 525 Index 527

Naminosuke Kubota received a Doctorate from Princeton University in 1973, majoring “Solid Propellant Combustion” and “Rocket Propulsion”. He was Director, Third Research Center (TRDI), Defense Ministry of Japan, which is responsible for aircraft and missiles.

See Also