WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

$290.95

Paperback

Forthcoming
Pre-Order now

QTY:

English
Elsevier - Health Sciences Division
01 January 2025
Multi-Scale Precipitation Variability Over the Tropics: New Insights from Observations and Modelling explores the latest developments in the observation and modelling of tropical precipitation. Researchers will benefit from this detailed analysis of recent advancements in the field. The text first examines recent satellite and RADAR observations and how those breakthroughs enhance our understanding. This is followed by a review of NASA A-train observations as well as extreme events. The editors also look at predicting precipitation variability with a state-of-the-art ensemble forecast system. The text wraps with a discussion of multiscale cloud and precipitation variability with the backdrop of a changing climate.

This text will provide researchers with new insights and a deeper understanding of the latest advances in the observation and modelling of tropical precipitation.
Edited by:   , , , , , , ,
Imprint:   Elsevier - Health Sciences Division
Country of Publication:   United States
Dimensions:   Height: 229mm,  Width: 152mm, 
Weight:   450g
ISBN:   9780443140303
ISBN 10:   0443140308
Pages:   250
Publication Date:  
Audience:   College/higher education ,  Further / Higher Education
Format:   Paperback
Publisher's Status:   Forthcoming

Dr. Mukhopadhyay did his PhD in Physics from Savitribai Phule Pune University in the year 2005 and has been working in the field of Numerical Weather Prediction (NWP) since last twenty-eight years. He has particularly worked in developing high resolution numerical model and improved cumulus and cloud parameterization. He developed for the first time the superparameterized climate forecast model for improved Indian summer monsoon simulation. He has led the program to develop the highest resolution (12km) global ensemble prediction system for short to medium range weather forecast over India. He has published 81 peer reviewed papers in journals and edited one book published by Springer and published six chapters in edited books. He has guided 7 students for PhD and currently guiding 5 students for PhD. He has guided 14 students for the master’s thesis. Dr. Khouider has a PhD in applied mathematics from the University of Montreal. His research is in atmospheric science and climate modeling. In the last 20 years, he is particularly interested in convectively coupled tropical waves and atmospheric convection. He wrote approximately 100 research articles and book chapters on this topic and a solo author book of 300 pages on “Models for Tropical Climate Dynamics: Waves, Clouds, and Precipitation” (Springer 2019). Khouider is one the pioneers in using stochastic models in climate models. He uses Ising-type models to represent features of tropical convection in climate models. The implementation of such models by Khouider and his collaborators as well as by other groups (around the world) has led to break throughs in our ability to represent features of tropical climate variability in coarse resolution climate models. Khouider has trained more than 30 students and 7 post docs. Dr. Shige completed his PhD dissertation in Kyoto University. He has been developing the Spectral Latent Heating (SLH) algorithm for spaceborne precipitation radars in collaboration with Prof. Yukari N. Takayabu in the University of Tokyo. The four-dimensional latent heating data derived from the SLH algorithm has been utilized in various studies. He also has been developing orographic rainfall retrieval for spaceborne microwave radiometers to improve a high-resolution mapped satellite rainfall product, the Global Satellite Mapping of Precipitation (GSMaP), which is utilized widely not only for science but also for applications. He has received the Award of the Meteorological Society of Japan in 2018, which represents the highest award in the Society. He served as a chief editor of the special edition of Journal of the Meteorological Society of Japan on “Global Precipitation Measurement (GPM): 5th Anniversary”.

See Also