LOW FLAT RATE AUST-WIDE $9.90 DELIVERY INFO

Close Notification

Your cart does not contain any items

Micro Electromechanical Systems (MEMS)

Practical Lab Manual

Sanket Goel Sanjeet Kumar Manish Bhaiyya Khairunnisa Amreen

$182.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Wiley-IEEE Press
30 January 2025
Practical lab manual on the stepwise description of the experimental procedures of micro electromechanical systems (MEMS) devices

Micro Electromechanical Systems (MEMS) is a highly practical lab manual on the relevant experimental procedures of MEMS devices, covering technical aspects including simulations and modeling, practical steps involved in fabrication, thorough characterizations of developed MEMS sensors, and leveraging these sensors in real-time targeted applications.

The book provides in-depth coverage of multi-physics modeling for various sensors, as well as fabrication methodologies for photolithography, soft lithography, 3D printing, and laser processing-based experimental details for the realization of MEMS devices. It also covers characterization techniques from morphological to compositional, and applications of MEMS devices in contemporary fields such as microfluidics, wearables, and energy harvesters. The text also includes a foundational introduction to the subject.

The book covers additional topics such as:

Basic fluid flow and heat transfer in microfabrication, Y and T channel mixing, and simulation processes for Droplet generation Simulations based on cyclic voltammetry and electrochemical impedance spectroscopy, screen and ink-jet printing, laser-induced graphene, reduced graphene oxide, and 3D printing X-ray diffraction, scanning electron microscopy, optical microscopy, Raman spectroscopy, energy dispersive spectroscopy, and Fourier Transform Infrared (FTIR) Spectroscopy

Experimental stepwise details to enable students to perform the experiments in the practical laboratory and future outlooks on the direction of the field

A practical guidebook on the subject, Micro Electromechanical Systems (MEMS) is a must-have resource for students, academicians, and lab technicians seeking to conduct experiments in real-time.
Contributions by:   , , ,
Edited by:  
Imprint:   Wiley-IEEE Press
Country of Publication:   United States
ISBN:   9781394229833
ISBN 10:   1394229836
Series:   IEEE Press Series on Sensors
Pages:   208
Publication Date:  
Audience:   Professional and scholarly ,  General/trade ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
About the Editor xv List of Contributors xvii Preface xxi About the Companion Website xxix 1 Multiphysics Simulations on the Effect of Fluidic Concentration Profiles Over Y-Channel and T-Channel Designs 1 Pavar Sai Kumar and Sanket Goel 1.1 Introduction 1 1.2 Real-Time Applications of This Study 2 1.3 Simulation Section 2 1.3.1 Prerequisites 2 1.3.2 Computer-Aided Designing (CAD) 2 1.3.3 Simulation Parameters 2 1.4 Results and Discussions 3 1.4.1 Model Designing 3 1.4.2 COMSOL Simulations 3 1.5 Conclusion 10 References 10 2 Droplet Generation in T-Junction Microchannel Using Multiphysics Software 13 Abhishek Kumar and Sanket Goel 2.1 Introduction 13 2.1.1 Brief Overview 14 2.2 Simulation Section 15 2.2.1 Prerequisites 15 2.2.2 Model and Geometry Definition 15 2.2.3 Simulation Parameters 15 2.3 Result and Discussion 17 2.4 Conclusion 17 References 18 3 Cleanroom-Assisted and Cleanroom-Free Photolithography 21 Abhishesh Pal, Satish Kumar Dubey, and Sanket Goel 3.1 Introduction 21 3.2 Photolithography Basics, Classification and Applications 22 3.2.1 Cleanroom-Assisted Photolithography 23 3.2.2 Cleanroom-Unassisted Photolithography 23 3.2.3 Cleanroom-Assisted vs. Cleanroom-Unassisted Photolithography 24 3.3 Experimental Section on Designing and Development of Features Using Photolithography 25 3.3.1 Brief Overview 25 3.3.2 Prerequisites 26 3.3.3 Instrumentation and Software 26 3.3.4 Stepwise Photolithography Procedure to Develop a Pattern 26 3.4 Conclusion 26 References 27 4 Additive Manufacturing (3D Printing) 29 Pavar Sai Kumar, Abhishek Kumar, and Sanket Goel 4.1 Stereolithography (SLA) Printing of Y-Channeled Microfluidic Chip 29 4.1.1 Introduction 29 4.1.2 Real-Time Applications of This Study 30 4.1.3 Designing Section 30 4.1.3.1 Prerequisites 30 4.1.3.2 Software and Instrumentation 30 4.1.3.3 Designing a Y-Channeled Microfluidic Chip 30 4.1.4 3D Printing Section 32 4.1.4.1 Slicing Operations 32 4.1.4.2 Cleaning and Curing Operations 32 4.1.5 Conclusion 34 4.2 Fused Deposition Modeling (FDM): Fabrication of Single Electrode Electrochemiluminescence Device 34 4.2.1 Introduction 34 4.2.1.1 Brief Overview 36 4.2.2 Designing Section 36 4.2.2.1 Prerequisites 36 4.2.2.2 Software and Instrumentation 36 4.2.2.3 Fabrication Step 36 4.2.3 Conclusion 37 References 37 5 Laser Processing 41 Pavar Sai Kumar, Abhishek Kumar, Manish Bhaiyya, and Sanket Goel 5.1 CO 2 Laser for Electrochemical Sensor Fabrication 41 5.1.1 Introduction 41 5.1.2 Real-Time Applications of This Study 42 5.1.3 Brief Overview 43 5.1.4 Experimental Section 43 5.1.4.1 Prerequisites 43 5.1.4.2 Materials, Instrumentation, and Software 43 5.1.4.3 Fabrication Steps 43 5.1.5 Conclusion 44 5.2 One-Step Production of Reduced Graphene Oxide from Paper via 450 nm Laser Ablations 45 5.2.1 Introduction 45 5.2.2 Experimentation 45 5.2.2.1 Prerequisites 45 5.2.2.2 Instrumentation and Software 45 5.2.2.3 Design File Generations 46 5.2.3 Production of rGO Patterns 48 5.3 Conclusion 50 References 50 6 Soft Lithography: DLW-Based Microfluidic Device Fabrication 53 K. Ramya and Sanket Goel 6.1 Introduction 53 6.2 Designing Section 54 6.2.1 Prerequisites 54 6.2.2 Instrumentation and Software 54 6.2.3 Step-by-Step Procedure for DLW-Soft Lithography Microfluidic Device Design 54 6.3 Conclusion 57 References 57 7 Electrode Fabrication Techniques 59 Sanjeet Kumar, Abhishek Kumar, K.S. Deepak, Manish Bhaiyya, Aniket Balapure, Satish Kumar Dubey, and Sanket Goel 7.1 Inkjet Printing Technique: Electrode Fabrication for Advanced Applications 59 7.1.1 Introduction 59 7.1.2 Designing Section 60 7.1.2.1 Prerequisites 60 7.1.2.2 Instrument and Equipment Required 60 7.1.2.3 Designing a Microelectrode Device 61 7.1.3 Dip Trace and Voltera V-One Microfabrication Section 61 7.1.3.1 Gerber Format File Generation 61 7.1.3.2 Voltera V-One Software 61 7.1.4 Conclusion 61 7.2 Screen Printing Technique for Electrochemical Sensor Fabrication 62 7.2.1 Introduction 62 7.2.2 Brief Overview 65 7.2.3 Experimental Section 65 7.2.3.1 Prerequisites 65 7.2.3.2 Materials, Instrumentation, and Software 65 7.2.3.3 Fabrication Steps 65 7.2.4 Conclusion 66 7.3 Physical Vapor Deposition (PVD) Technique for Electrode Fabrication 66 7.3.1 Introduction 66 7.3.1.1 Physical Vapor Deposition (PVD) 66 7.3.1.2 Gold Electrodes as Biosensors 67 7.3.2 Experimental Details 67 7.3.2.1 Instrument and Equipment Required 67 7.3.2.2 Equipment Setup 67 7.3.2.3 Substrate Preparation 67 7.3.2.4 Deposition Process 68 7.3.2.5 Electrode Fabrication 68 7.3.3 Precautions 69 7.4 Conclusion 69 References 69 8 Morphological Characterization 71 Dhoni Nagaraj, Yuvraj Maphrio Mao, Parvathy Nair, Sanjeet Kumar, Imran Khan, Amreen Khairunnisa, R.N. Ponnalagu, Satish Kumar Dubey, and Sanket Goel 8.1 Morphological Studies with Different Techniques 71 8.1.1 Introduction 71 8.2 Scanning Electron Microscopy 71 8.3 Steps Involved in the Scanning Electron Microscope Characterization 72 8.3.1 Brief Overview 72 8.3.2 Sample Preparation 72 8.3.3 Instrumentation 73 8.3.4 Results and Conclusion 73 8.4 X-Ray Diffraction (XRD) 74 8.4.1 Introduction 74 8.4.2 XRD Setup 76 8.4.3 Sample Preparations and Methodology 77 8.4.3.1 Brief Overview 77 8.4.4 Steps Involved in Sample Preparation 77 8.4.5 Instrument Setup 77 8.4.6 Data Collection 77 8.4.7 Data Analysis 78 8.4.8 Crystal Structure Determination (if Necessary) 78 8.4.9 Data Interpretation 78 8.4.10 Conclusion 78 8.5 Optical LED Microscope 79 8.5.1 Introduction 79 8.5.2 Sample Preparation 79 8.5.2.1 Prerequisites 79 8.5.3 Brief Overview 79 8.5.4 Principle of Optical Microscope 80 8.5.5 Sample Preparation and Instrumentation Setup 81 8.5.6 Conclusion 82 8.6 Contact Angle 83 8.6.1 Introduction 83 8.6.2 Setup Specifications 84 8.6.3 Biolin Scientific Theta Lite – Optical Tensiometer 85 8.6.4 Sample Preparations and Methodology 85 8.6.4.1 Brief Overview 85 8.6.5 Protocols to Be Followed While Operating the Instrument 86 8.6.6 Conclusions 87 References 87 9 Spectroscopic Characterization 89 Himanshi Awasthi, N.K. Nishchitha, Sonal Fande, and Sanket Goel 9.1 Introduction 89 9.2 Ultraviolet-Visible (UV-Vis) Spectrophotometers 90 9.2.1 Steps Involved 90 9.2.2 Conclusion 91 9.3 X-Ray Photoelectron Spectroscopy (XPS) 92 9.3.1 Fundamentals of XPS 92 9.3.1.1 XPS Instruments Have the Following Components 92 9.3.2 Sample Preparation Steps 93 9.3.2.1 Sample Mounting 93 9.3.3 Experimental Procedure 93 9.3.3.1 Detailed Instructions 94 9.3.4 Conclusion 96 9.4 Raman Spectroscopy 97 9.4.1 Sample Preparation 97 9.4.1.1 Prerequisites 97 9.4.2 Experimental Procedure 97 9.4.2.1 Instrumentation Configuration 98 9.4.2.2 Specific Intensity Ranges 98 9.4.2.3 Sample Preparation 98 9.4.2.4 Laser Targeting 98 9.4.2.5 Measurement of the Baseline 98 9.4.2.6 Subtraction of Dark Signals 98 9.4.2.7 Spectrum Calibration 99 9.4.2.8 Raman Scanning 99 9.4.2.9 Data Analysis 99 9.4.2.10 Data Interpretation 99 9.4.2.11 Data Representation 99 9.4.2.12 Cleansing 99 9.4.3 Results 99 9.5 Fourier Transform Infrared (FTIR) Spectroscopy 100 9.5.1 Brief Overview 100 9.5.2 Sampling Techniques in FTIR 100 9.5.3 Sample Preparation 101 9.5.3.1 Solid Samples (Powders and Thin Films) 101 9.5.3.2 Liquid Samples 102 9.5.3.3 Gaseous Sample 102 9.5.4 Interpretation of FTIR 102 9.5.5 Conclusion 103 References 104 10 Microfluidic Devices 105 Abhishesh Pal, Pavar Sai Kumar, Sreerama Amrutha Lahari, Sonal Fande, Abhishek Kumar, Manish Bhaiyya, Sohan Dudala, R.N. Ponnalagu, Satish Kumar Dubey, and Sanket Goel 10.1 Electrochemical Detection of Bacteria, Biomarkers, Biochemical, and Environmental Pollutants 105 10.1.1 Introduction 105 10.1.2 Experimental Section for Detection of Bacteria (Escherichia coli (E. coli)) 106 10.1.2.1 Brief Overview 106 10.1.2.2 Prerequisites 107 10.1.2.3 Chemicals and Equipment 107 10.1.2.4 Procedure 107 10.1.3 Experimental Section for Detection of Biomarkers (Lactate) 108 10.1.3.1 Brief Overview 108 10.1.3.2 Prerequisites 108 10.1.3.3 Chemicals and Equipment 108 10.1.3.4 Procedure 109 10.1.4 Experimental Section for Detection of Biochemical Analyte 111 10.1.4.1 Brief Overview 111 10.1.4.2 Prerequisites 111 10.1.4.3 Procedure 111 10.1.4.4 Discussion 112 10.1.5 Experimental Section for Detection of Environmental Pollutants 113 10.1.5.1 Brief Overview 113 10.1.5.2 Prerequisites 113 10.1.5.3 Procedure 113 10.1.6 Conclusion 113 10.2 Microfluidics Integrated Electrochemiluminescence System for Hydrogen Peroxide Detection 114 10.2.1 Introduction 114 10.2.2 Experimental Section 116 10.2.2.1 Brief Overview 116 10.2.2.2 Prerequisites 116 10.2.2.3 Materials and Instrumentation 117 10.2.2.4 General Electrochemiluminescence Process Luminol and Hydrogen Peroxide 117 10.2.2.5 Precautions 117 10.2.3 Conclusion 117 10.3 Development of Microfluidic Chip for Colorimetric Analysis 118 10.3.1 Introduction 118 10.3.2 Experimentation 119 10.3.2.1 Brief Overview 119 10.3.2.2 Prerequisites 119 10.3.2.3 Solution Preparation 119 10.3.2.4 Software Required 119 10.3.3 Colorimetric Determination on Microfluidic Chip 123 10.3.4 Conclusions 123 10.4 Development of Disposable and Eco-Friendly μPADs as Chemiluminescence Substrates 123 10.4.1 Introduction 123 10.4.2 Real-Time Applications of This Study 124 10.4.3 Experimentation 124 10.4.3.1 Prerequisites 124 10.4.3.2 Software Installations 125 10.4.3.3 Design of Hydrophobic Barriers 125 10.4.4 3D Printing of Hydrophobic Barriers 125 10.4.5 Conclusion 127 10.5 Microfluidic Devices for Polymerase Chain Reaction (PCR) 128 10.5.1 Introduction 128 10.5.2 Prerequisites 129 10.5.3 Software Installations 129 10.5.4 Design and Fabrication of Microfluidic Device 129 10.5.5 Conclusion 131 References 131 11 Wearable Devices 135 Ramya Priya Pujari, S. Vanmathi, Satish Kumar Dubey, and Sanket Goel 11.1 Application of Laser-Induced Graphene in Breath Analysis 135 11.1.1 Introduction 135 11.1.2 Experimentation 136 11.1.2.1 Brief Overview 136 11.1.3 Conclusion 138 11.2 Wearable Microfluidic Device for Nucleic Acid Amplification 138 11.2.1 Introduction 138 11.2.2 Experimentation 139 11.2.2.1 Brief Overview 139 11.2.3 Conclusion 141 11.3 Wearable Patch Biofuel Cell 142 11.3.1 Introduction 142 11.3.2 Experimentation 142 11.3.2.1 Brief Overview 142 11.3.3 Conclusion 145 References 145 12 Energy Devices 147 Himanshi Awasthi, S. Vanmathi, and Sanket Goel 12.1 Introduction 147 12.1.1 Hydrogen Fuel Cell 148 12.1.2 Experimentation 149 12.1.2.1 Brief Overview 149 12.1.2.2 Prerequisites 149 12.1.2.3 Experimentation 149 12.1.2.4 Instrumentation for Testing Device Performance 150 12.1.3 Conclusion 150 12.2 Enzymatic Biofuel Cells and Microbial Fuel Cells 150 12.2.1 Introduction 150 12.2.1.1 Enzymatic Biofuel Cells 150 12.2.2 Experimentation 151 12.2.2.1 Brief Overview 151 12.2.2.2 Prerequisites 151 12.2.2.3 Experimentation 151 12.2.2.4 Instrument Process to Text Device Performance 152 12.2.3 Conclusion 153 12.3 Microbial Fuel Cells (MFCs) 153 12.3.1 Introduction 153 12.3.2 Experimentation 153 12.3.2.1 Prerequisites 153 12.3.2.2 Experimentation 154 12.3.2.3 Process to Test Device Performance 155 12.3.3 Conclusion 155 12.4 Electrochemical Characterization of Supercapacitor Energy Devices 156 12.4.1 Supercapacitor 156 12.4.2 Experimentation 156 12.4.2.1 Brief Overview 156 12.4.2.2 Prerequisites 156 12.4.3 Electrochemical Characterization Technique for the Supercapacitor Device 157 12.4.3.1 Cyclic Voltammetry (CV) 157 12.4.3.2 Galvanostatic Charge/Discharge (GCD) 159 12.4.3.3 Electrochemical Impedance Spectroscopy (EIS) 159 12.4.4 Conclusion 159 References 160 13 Conclusion and Future Outlook 163 Amreen Khairunnisa Index 165

SANKET GOEL, PH.D., is a Professor with the Department of Electrical and Electronics Engineering and Principal Investigator with the MEMS, Microfluidics and Nanoelectronics (MMNE) Lab at BITS Pilani, Hyderabad Campus, Hyderabad, India.

See Also