In the 6th edition of Mechanics of Materials, author team Riley, Sturges, and Morris continue to provide students with the latest information in the field, as well as realistic and motivating problems. This updated revision of Mechanics of Materials (formerly Higdon, Olsen and Stiles) features thorough treatment of stress, strain, and the stress-strain relationships. These topics are covered before the customary treatments of axial loading, torsion, flexure, and buckling, allowing for earlier introduction of more realistic problems, such as those associated with combined loadings.
Riley, Sturges, and Morris continue to write in a student-friendly style that includes new illustrations throughout each chapter. The text stresses the use of fundamental principles and the concepts of mechanics to solve all problems. As a result, students must apply the information presented in each chapter to answer realistic problems instead of simply using formulas. This problem solving method motivates students to learn the material because they see how it is used in the real world.
Chapter 1 Introduction and Review of Statics 1 1-1 Introduction 1 1-2 Classification of Forces 2 1-3 Equilibrium of a Rigid Body 4 1-4 Equilibrium of a Deformable Body 30 1-5 Internal Forces 34 Summary 44 Chapter 2 Analysis of Stress: Concepts and Definitions 48 2-1 Introduction 48 2-2 Normal Stress under Axial Loading 48 2-3 Shearing Stress in Connections 49 2-4 Bearing Stress 51 2-5 Units of Stress 51 2-6 Stresses on an Inclined Plane in an Axially Loaded Member 65 2-7 Stress at a general point in an Arbitrarily Loaded Member 72 2-8 Two-dimensional or Plane Stress 74 2-9 The Stress Transformation Equations for Plane Stress 75 2-10 Principal Stresses and Maximum Shearing Stress—Plane Stress 85 2-11 Mohr’s Circle for Plane Stress 98 2-12 General State of Stress at a Point 108 Summary 117 Chapter 3 Analysis of Strain: Concepts and Definitions 121 3-1 Introduction 121 3-2 Displacement, Deformation, and Strain 121 3-3 The State of Strain at a point 129 3-4 The Strain Transformation Equations for Plane Strain 130 3-5 Principal Strains and Maximum Shear Strain 135 3-6 Mohr’s Circle for Plane Strain 140 3-7 Strain Measurement and Rosette Analysis 142 Summary 148 Chapter 4 Material Properties and Stress-Strain Relationships 153 4-1 Introduction 153 4-2 Stress-Strain diagrams 153 4-3 Generalized Hooke’s law 164 4-4 Thermal Strain 176 4-5 Stress-Strain Equations for Orthotropic Materials 180 Summary 184 Chapter 5 Axial Loading Applications and Pressure Vessels 189 5-1 Introduction 189 5-2 Deformation of Axially Loaded Members 189 5-3 Deformations in a System of Axially Loaded Bars 201 5-4 Statically Indeterminate Axially Loaded Members 209 5-5 Thermal Effects 225 5-6 Stress Concentrations 234 5-7 Inelastic Behavior of Axially Loaded Members 239 5-8 Thin-Walled Pressure Vessels 246 5-9 Combined Effects—Axial and Pressure Loads 254 5-10 Thick-Walled Cylindrical Pressure Vessels 257 5-11 Design 264 Summary 270 Chapter 6 Torsional Loading of Shafts 276 6-1 Introduction 276 6-2 Torsional Shearing Strain 277 6-3 Torsional Shearing Stress—The Elastic Torsion formula 279 6-4 Torsional Displacements 281 6-5 Stresses on Oblique Planes 295 6-6 Power Transmission 300 6-7 Statically Indeterminate Members 303 6-8 Combined Loading—Axial, Torsional, and Pressure Vessel 315 6-9 Stress Concentrations in Circular Shafts under Torsional Loadings 322 6-10 Inelastic Behavior of Torsional Members 325 6-11 Torsion of Noncircular Sections 331 6-12 Torsion of Thin-Walled Tubes—Shear flow 333 6-13 Design Problems 339 Summary 344 Chapter 7 Flexural Loading: Stresses in Beams 349 7-1 Introduction 349 7-2 Flexural Strains 352 7-3 Flexural Stresses 354 7-4 The Elastic Flexure formula 356 7-5 Shear forces and Bending Moments in Beams 366 7-6 Load, Shear Force, and Bending Moment relationships 376 7-7 Shearing Stresses in Beams 391 7-8 Principal Stresses in Flexural Members 405 7-9 Flexural Stresses—Unsymmetrical Bending 410 7-10 Stress Concentrations under Flexural Loadings 418 7-11 Inelastic Behavior of Flexural Members 422 7-12 Shearing Stresses in Thin-Walled Open Sections—Shear center 431 7-13 Flexural Stresses in Beams of Two Materials 441 7-14 Flexural Stresses in Reinforced Concrete Beams 445 7-15 Flexural Stresses in Curved Beams 450 7-16 Combined Loading: Axial, Pressure, Flexural, and Torsional 457 7-17 Design Problems 475 Summary 480 Chapter 8 Flexural Loading: Beam Deflections 487 8-1 Introduction 487 8-2 The Differential Equation of the Elastic Curve 487 8-3 Deflection by Integration 489 8-4 Deflections by Integration of Shear Force or Load Equations 502 8-5 Singularity Functions 507 8-6 Deflections by Superposition 520 8-7 Deflections due to Shearing Stress 530 8-8 Deflections by Energy Methods—Castigliano’s Theorem 532 8-9 Statically Indeterminate Beams 542 8-10 Design problems 567 Summary 574 Chapter 9 Columns 578 9-1 Introduction 578 9-2 Buckling of Long, Straight Columns 579 9-3 Effects of Different Idealized End Conditions 587 9-4 Empirical Column Formulas—Centric Loading 592 9-5 Eccentrically Loaded Columns 600 9-6 Design problems 606 Summary 610 Chapter 10 Energy Methods and Theories of Failure 614 10-1 Introduction 614 Part A: Energy Methods 615 10-2 Strain Energy 615 10-3 Elastic Strain Energy for Various Loads 617 10-4 Impact Loading 624 Part B: Theories of Failure for Static Loading 637 10-5 Introduction 637 10-6 Failure Theories for Ductile Materials 637 10-7 Failure Theories for Brittle Materials 650 Summary 654 Appendices A Second Moments of Area 659 B Tables of Properties 683 Index 705
William F. Riley is the author of Mechanics of Materials, 6th Edition, published by Wiley. Leroy D. Sturges is the author of Mechanics of Materials, 6th Edition, published by Wiley.