JOIN IN THE GLOBAL BOOK CRAWL MORE INFO

Close Notification

Your cart does not contain any items

Machine Learning and AI with Simple Python and Matlab Scripts

Courseware for Non-computing Majors

M. Umit Uyar (City College of the City University of New York, USA)

$163.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Wiley-IEEE Press
22 June 2025
Series: IEEE Press
A practical guide to AI applications for Simple Python and Matlab scripts

Machine Learning and AI with Simple Python and Matlab Scripts: Courseware for Non-computing Majors introduces basic concepts and principles of machine learning and artificial intelligence to help readers develop skills applicable to many popular topics in engineering and science. Step-by-step instructions for simple Python and Matlab scripts mimicking real-life applications will enter the readers into the magical world of AI, without requiring them to have advanced math and computational skills. The book is supported by instructor only lecture slides and sample exams with multiple-choice questions.

Machine Learning and AI with Simple Python and Matlab Scripts includes information on:

Artificial neural networks applied to real-world problems such as algorithmic trading of financial assets, Alzheimer’s disease prognosis Convolution neural networks for speech recognition and optical character recognition Recurrent neural networks for chatbots and natural language translators Typical AI tasks including flight control for autonomous drones, dietary menu planning, and route planning Advanced AI tasks including particle swarm optimization and differential and grammatical evolution as well as the current state of the art in AI tools

Machine Learning and AI with Simple Python and Matlab Scripts is an accessible, thorough, and practical learning resource for undergraduate and graduate students in engineering and science programs along with professionals in related industries seeking to expand their skill sets.
By:  
Imprint:   Wiley-IEEE Press
Country of Publication:   United States
Weight:   907g
ISBN:   9781394294954
ISBN 10:   1394294956
Series:   IEEE Press
Pages:   384
Publication Date:  
Audience:   College/higher education ,  Professional and scholarly ,  Primary ,  Undergraduate
Replaced By:   9781394325252
Format:   Hardback
Publisher's Status:   Active
About the Author xiii Preface xv Acknowledgments xvii About the Companion Website xix 1 Introduction 1 1.1 Artificial Intelligence 1 1.2 A Historical Perspective 1 1.3 Principles of AI 2 1.4 Applications That Are Impossible Without AI 2 1.5 Organization of This Book 3 2 Artificial Neural Networks 7 2.1 Introduction 7 2.2 Applications of ANNs 7 2.3 Components of ANNs 8 2.3.1 Neurons 8 2.3.2 Sigmoid Activation Function 9 2.3.3 Rectilinear Activation Function 9 2.3.4 Weights of Synapses 10 2.4 Training an ANN 11 2.5 Forward Propagation 12 2.5.1 Forward Propagation from Input to Hidden Layer 13 2.6 Back Propagation 13 2.6.1 Back Propagation for a Neuron 13 2.6.2 Back Propagation – from Output to Hidden Layer 15 2.6.3 Back Propagation – from Hidden Layer to Input 16 2.7 Updating Weights 17 2.8 ANN with Input Bias 17 2.9 A Simple Algorithm for ANN Training 18 2.10 Computational Complexity of ANN Training 18 2.11 Normalization of ANN Inputs and Outputs 19 2.12 Concluding Remarks 20 2.13 Exercises for Chapter 2 20 3 ANNs for Optimized Prediction 23 3.1 Introduction 23 3.2 Selection of ANN Inputs 24 3.3 Selection of ANN Outputs 24 3.4 Construction of Hidden Layers 25 3.5 Case Study 1: Sleep-Study Example 25 3.5.1 Using Matrices for ANN Training 26 3.5.2 Forward Propagation 28 3.5.3 Back Propagation 28 3.5.4 Updating Weights 29 3.5.5 Forward Propagation with New Weights 29 3.5.6 Back Propagation with New Weights 30 3.5.7 Using Normalized Input and Output Values 31 3.5.8 Reducing Errors During Training 34 3.5.9 Implementation of Sleep-Study ANN in Python 34 3.5.10 Implementation of Sleep-Study ANN in Matlab 37 3.6 Case Study 2: Prediction of Bike Rentals 41 3.6.1 Python Script for Bike Rentals Using an ANN 41 3.6.2 Matlab Script for Bike Rentals Using an ANN 46 3.7 Concluding Remarks 48 3.8 Exercises for Chapter 3 48 4 ANNs for Financial Stock Trading 51 4.1 Introduction 51 4.2 Programs that Buy and Sell Stocks 51 4.3 Technical Indicators 51 4.3.1 Simple Moving Average 52 4.3.2 Momentum 53 4.3.3 Exponential Moving Average 54 4.3.4 Bollinger Bands 54 4.4 A Simple Algorithmic Trading Policy 55 4.5 A Simple ANN for Algorithmic Stock Trading 57 4.5.1 ANN Inputs and Outputs 57 4.5.2 ANN Architecture 58 4.6 Python Script for Stock Trading Using an ANN 59 4.7 Matlab Script for Stock Trading Using an ANN 63 4.8 Concluding Remarks 65 4.9 Exercises for Chapter 4 65 5 ANNs for Alzheimer’s Disease Prognosis 67 5.1 Introduction 67 5.2 Alzheimer’s Disease 67 5.3 A Simple ANN for AD Prognosis 68 5.4 Python Script for AD Prognosis Using an ANN 71 5.5 Matlab Script for AD Prognosis Using an ANN 75 5.6 Concluding Remarks 80 5.7 Exercises for Chapter 5 81 6 ANNs for Natural Language Processing 83 6.1 Introduction 83 6.2 Impact of Text Messages on Stock Markets 84 6.3 A Simple ANN for NLP 85 6.3.1 ANN Inputs and Outputs 85 6.3.2 Keywords 85 6.3.3 Formation of Training Data 86 6.3.4 ANN Architecture 88 6.4 Python Script for NLP Using an ANN 89 6.5 Matlab Script for NLP Using an ANN 92 6.6 Concluding Remarks 96 6.7 Exercises for Chapter 6 97 7 Convolutional Neural Networks 99 7.1 Introduction 99 7.1.1 Training CNNs 100 7.2 Variations of CNNs 101 7.3 Applications of CNNs 101 7.4 CNN Components 102 7.5 A Numerical Example of a CNN 102 7.6 Computational Cost of CNN Training 108 7.7 Concluding Remarks 112 7.8 Exercises for Chapter 7 112 8 CNNs for Optical Character Recognition 115 8.1 Introduction 115 8.2 A Simple CNN for OCR 115 8.3 Organization of Training and Reference Files 117 8.4 Python Script for OCR Using a CNN 119 8.5 Matlab Script for OCR Using a CNN 124 8.6 Concluding Remarks 130 8.7 Exercises for Chapter 8 130 9 CNNs for Speech Recognition 133 9.1 Introduction 133 9.2 A Simple CNN for Speech Recognition 134 9.3 Organization of Training and Reference Files 136 9.4 Python Script for Speech Recognition Using a CNN 138 9.5 Matlab Script for Speech Recognition Using a CNN 144 9.6 Concluding Remarks 150 9.7 Exercises for Chapter 9 150 10 Recurrent Neural Networks 151 10.1 Introduction 151 10.2 One-to-One Single RNN Cell 153 10.2.1 A Simple Alphabet and One-Hot Encoding 156 10.2.2 Forward and Back Propagation 157 10.3 A Numerical Example 158 10.4 Multiple Hidden Layers 163 10.5 Embedding Layer 165 10.5.1 Forward and Back Propagation with Embedding 167 10.5.2 A Numerical Example with Embedding 168 10.6 Concluding Remarks 172 10.7 Exercises for Chapter 10 172 11 RNNs for Chatbot Implementation 175 11.1 Introduction 175 11.2 Many-to-Many RNN Architecture 175 11.3 A Simple Chatbot 176 11.4 Python Script for a Chatbot Using an RNN 179 11.5 Matlab Script for a Chatbot Using an RNN 183 11.6 Concluding Remarks 188 11.7 Exercises for Chapter 11 189 12 RNNs with Attention 191 12.1 Introduction 191 12.2 One-to-One RNN Cell with Attention 191 12.3 Forward and Back Propagation 193 12.4 A Numerical Example 195 12.5 Embedding Layer 200 12.6 A Numerical Example with Embedding 202 12.7 Concluding Remarks 207 12.8 Exercises for Chapter 12 207 13 RNNs with Attention for Machine Translation 209 13.1 Introduction 209 13.2 Many-to-Many Architecture 210 13.3 Python Script for Machine Translation by an RNN-Att 211 13.4 Matlab Script for Machine Translation by an RNN-Att 216 13.5 Concluding Remarks 223 13.6 Exercises for Chapter 13 223 14 Genetic Algorithms 225 14.1 Introduction 225 14.2 Genetic Algorithm Elements 226 14.3 A Simple Algorithm for a GA 227 14.4 An Example of a GA 230 14.5 Convergence in GAs 231 14.6 Concluding Remarks 232 14.7 Exercises for Chapter 14 232 15 GAs for Dietary Menu Selection 235 15.1 Introduction 235 15.2 Definition of the KP 236 15.3 A Simple Algorithm for the KP 238 15.4 Variations of the KP 239 15.5 GAs for KP Solution 240 15.6 Python Script for Dietary Menu Selection Using a GA 242 15.7 Matlab Script for Dietary Menu Selection Using a GA 245 15.8 Concluding Remarks 248 15.9 Exercises for Chapter 15 248 16 GAs for Drone Flight Control 251 16.1 Introduction 251 16.2 UAV Swarms 251 16.3 UAV Flight Control 252 16.4 A Simple GA for UAV Flight Control 253 16.4.1 Virtual Force-Based Fitness Function 254 16.4.2 FGA Progression 255 16.4.3 Chromosome for FGA 257 16.5 Python Script for UAV Flight Control Using a GA 260 16.6 Matlab Script for UAV Flight Control Using a GA 264 16.7 Concluding Remarks 270 16.8 Exercises for Chapter 16 271 17 GAs for Route Optimization 273 17.1 Introduction 273 17.2 Definition of the TSP 274 17.3 A Simple Algorithm for the TSP 276 17.4 Variations of the TSP 277 17.5 GA Solution for the TSP 277 17.6 Python Script for Route Optimization Using a GA 279 17.7 Matlab Script for Route Optimization Using a GA 284 17.8 Concluding Remarks 287 17.9 Exercises for Chapter 17 289 18 Evolutionary Methods 291 18.1 Introduction 291 18.2 Particle Swarm Optimization 291 18.2.1 Applications of PSO 292 18.2.2 PSO Operation 293 18.2.3 Remarks for PSO 298 18.3 Differential Evolution 298 18.3.1 Different Versions of DE 299 18.3.2 Applications of DE 299 18.3.3 A Simple Algorithm for DE 299 18.3.4 Numerical Example: Maximum of sinc by DE 302 18.3.5 Remarks for DE 305 18.4 Grammatical Evolution 306 18.4.1 A Simple Algorithm for GE 306 18.4.2 Definition of GE 307 18.4.3 A Simple GA to Implement GE 314 18.4.4 Remarks on GE 315 Appendix A ANNs with Bias 317 A.1 Introduction 317 A.2 Training with Bias Input 317 A.3 Forward Propagation 318 A.3.1 Forward Propagation from Input to Hidden Layer 319 A.3.2 Neuron Back Propagation with Bias Input 319 Appendix B Sleep Study ANN with Bias 321 B.1 Inclusion of Bias Term in ANN 321 B.1.1 Inclusion of Bias in Matrices 321 B.1.2 Forward Propagation with Biases 322 Appendix C Back Propagation in a CNN 327 Appendix D Back Propagation Through Time in an RNN 331 D.1 Back Propagation in an RNN 331 D.2 Embedding Layer 335 Appendix E Back Propagation Through Time in an RNN with Attention 337 E.1 Back Propagation in an RNN-Att 337 E.2 Embedding Layer 340 Bibliography 343 Index 353

M. Ümit Uyar is a Professor at the City College of the City University of New York, USA. Dr. Uyar is an IEEE Fellow, author, co-author and co-editor of seven books, holder of seven U.S. patents, and developer of AI and game theory-based algorithms for applications in topology control in mobile networks and personalized cancer treatment.

See Also