WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

$633.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Woodhead Publishing
28 June 2022
Luminescent Metal Nanoclusters: Synthesis, Characterization, and Applications provides a comprehensive accounting of various protocols used for the synthesis of metal nanoclusters, their characterization techniques, toxicity evaluation and various applications and future prospects. The book provides detailed experimental routes, along with mechanisms on the formation of benign metallic clusters using biomaterials and a comprehensive review regarding the preparation, properties and prospective applications of these nano clusters in various fields, including therapeutic applications. Various methods to protect nanocluster materials to increase their stability are emphasized, including the incorporation of ligands (protein, small molecule, DNA, thiols).

This book addresses a gap in the current literature by bringing together the preparation, characterization and applications of all the possible types of reported metal nanoclusters and their hybrids. It is suitable for materials scientists and engineers in academia and those working in research and development in industry. It may also be of interest to those working in the interdisciplinary nanotechnology community, such as physical chemists.

Prof. Sabu Thomas is a Professor of Polymer Science and Engineering and the Director of the School of Energy Materials at Mahatma Gandhi University, India. Additionally, he is the Chairman of the Trivandrum Engineering Science & Technology Research Park (TrEST Research Park) in Thiruvananthapuram, India. He is the founder director of the International and Inter-university Centre for Nanoscience and Nanotechnology at Mahatma Gandhi University and the former Vice-Chancellor of the same institution. Prof. Thomas is internationally recognized for his contributions to polymer science and engineering, with his research interests encompassing polymer nanocomposites, elastomers, polymer blends, interpenetrating polymer networks, polymer membranes, green composites, nanocomposites, nanomedicine, and green nanotechnology. His groundbreaking inventions in polymer nanocomposites, polymer blends, green bionanotechnology, and nano-biomedical sciences have significantly advanced the development of new materials for the automotive, space, housing, and biomedical fields. Dr. Thomas has been conferred with Honoris Causa (DSc) by the University of South Brittany, France. Kuruvilla Joseph is a Professor in the Department of Chemistry at the Indian Institute of Space Science and Technology, Thiruvananthapuram, India. His research areas includes nanomaterials and nanocomposites, polymer blends and composites, synthesis of polymers from natural resources, green materials and biocomposites, aging and degradation, and development of biosensors. Dr. Saritha Appukuttan was awarded her PhD from Mahatma Gandhi University in 2012 working in the field of polymer nanocomposites. She has also been worked for two years on the development of gas barrier membranes on an ISRO (Indian Space Research Organization) project. She has published around 25 book chapters with highly reputed publishers and several research papers in high impact international journals such as Composites Part A, Composites Part B, and Materials Chemistry and Physics and has edited two books on “Fibre Reinforced Composites: Constituents, compatibility, perspectives and applications” (Elsevier) and on “Luminescent Metal Nanoclusters” (Elsevier). Currently, she is editing two more books on “Lignin and its Composites: A sustainable tool for health care and medical applications” and “Zero-Dimensional Carbon Nanostructures” to be published by RSC and Elsevier, respectively. Meegle S. Mathew is an Assistant Professor in the Department of Chemistry at Mar Athanasius College, Kothamangalam, India. Her research interests cover nano-biophotonics, optical imaging, the development of biosensors and biomedical devices using fluorescent nanoparticles, polymer nanocomposites for biomedical applications, photocatalysis, and photoreduction.

See Also