WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

$194

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
CRC Press
28 December 2022
Large Outdoor Fire Dynamics provides the essential knowledge for the hazard evaluation of large outdoor fires, including wildland, WUI (wildland-urban interface), and urban fires. The spread of outdoor fires can be viewed as a successive occurrence of physical and chemical processes – solid fuel combustion, heat transfer to surrounding combustibles, and ignition of heated combustibles – which are explained herein. Engineering equations frequently used in practical hazard analyses are derived and then integrated to implement a computational code predicting fire spread among discretely distributed combustibles. This code facilitates learning the procedure of hazard evaluation for large outdoor fires.

Chapters cover underlying assumptions for analyzing fire spread behavior in large outdoor fires, namely, wind conditions near the ground surface and fundamentals of heat transfer; the physical mechanism of fire spread in and between combustibles, specifically focusing on fire plumes (both reacting and non-reacting) and firebrand dispersal; and the spatial modeling of 3D objects and developing the computational framework for predicting fire spread.

The book is ideal for engineers, researchers, and graduate students in fire safety as well as mechanical engineering, civil engineering, disaster management, safety engineering, and planning. Companion source codes are available online.
By:  
Imprint:   CRC Press
Country of Publication:   United Kingdom
Dimensions:   Height: 234mm,  Width: 156mm, 
Weight:   925g
ISBN:   9780367561680
ISBN 10:   0367561689
Pages:   394
Publication Date:  
Audience:   Professional and scholarly ,  College/higher education ,  Undergraduate ,  Further / Higher Education
Format:   Hardback
Publisher's Status:   Active

Keisuke Himoto, Dr.Eng., is a senior researcher at the National Institute for Land and Infrastructure Management in Tsukuba, Japan. His research interests cover a broad range of fire safety issues in the built environment but with a special focus on large outdoor fires. He is the developer of various fire-related computational models, including one of the first physics-based computational models for fire spread in densely-built urban areas.

See Also