WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

Large Aperture Array Radar Systems for Automotive Applications

Fabian Schwartau

$69.95   $59.26

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Cuvillier
18 October 2021
The automotive industry is pushing towards highly assisted and even autonomous driving cars. To gather a more precise and reliable representation of the car's surroundings, the sensors and the signal processing are improving over time and are a subject to continuous research. One essential sensor is the radar, which is robust and reliable even in harsh environmental conditions. The primary downside of a radar is its low resolution compared to lidar or camera-based systems. To mitigate these drawbacks the resolution of radar systems has to be improved. The bandwidth has to be increased to improve the range resolution, and the aperture has to be increased to improve the angular resolution. Primarily caused by the automotive industry, fully integrated radar on chip solutions are now available and allow the construction of more complex radar systems. These radar on chip devices lay the foundation for radars that fulfill the requirements of increased resolution for future systems. Although this work is focused automotive applications, most ideas, concepts, and calculations are also applicable to other fields. Similar systems may be used in the security sector, quality control in industrial processes, or gesture detection, to name a few examples. This thesis shows the development of a conceptual future radar system for automotive applications. The focus is on providing a large antenna aperture to achieve the required high angular resolution. Two genetic algorithms are developed to optimize the antenna array for a good side lobe level while providing high angular resolution. Two demonstrators are built to implement certain aspects of the proposed radar system and prove the general concept viable. The first demonstrator features a large aperture with a limited side lobe level and is using a modular approach. The modules are synchronized with a radio over fiber system. The second demonstrator uses the previously proposed antenna array, which is implemented with a synthetic a
By:  
Imprint:   Cuvillier
Dimensions:   Height: 210mm,  Width: 148mm,  Spine: 8mm
Weight:   181g
ISBN:   9783736975071
ISBN 10:   3736975074
Pages:   144
Publication Date:  
Audience:   General/trade ,  ELT Advanced
Format:   Paperback
Publisher's Status:   Active

See Also