LOW FLAT RATE AUST-WIDE $9.90 DELIVERY INFO

Close Notification

Your cart does not contain any items

Introduction to Mathematical Modeling and Computer Simulations

Vladimir Mityushev Radoslaw Antoni Kycia Wojciech Nawalaniec Natalia Rylko

$179

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Chapman & Hall/CRC
20 December 2024
Introduction to Mathematical Modeling and Computer Simulations, Second Edition continues to serve as an engaging and accessible textbook for undergraduates studying mathematical modeling and computer simulations. The book is heavily focussed on applications, and so may have a particular appeal to applied mathematicians, engineers, and others working in applied quantitative disciplines. The book may also be useful as a reference text for reference text for early-career stage practitioners.

New to this Edition:

A new chapter on Machine Learning and Data Analysis in order to account for recent developments in the field. Chapter 9, ‘Asymptotic Methods in Composites’, has been entirely re-written to make it more consistent with industry and scientific standards. Includes an elementary introduction to programming in Python language. The Jupyter notebooks with examples for Chapter 10 and Appendix A are available for a download from www.

Routledge.com/9781032661513.
By:   , , ,
Imprint:   Chapman & Hall/CRC
Country of Publication:   United Kingdom
Edition:   2nd edition
Dimensions:   Height: 234mm,  Width: 156mm, 
Weight:   453g
ISBN:   9781032661513
ISBN 10:   1032661518
Pages:   330
Publication Date:  
Audience:   College/higher education ,  Professional and scholarly ,  A / AS level ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active

Vladimir Mityushev is currently a Professor and leads the research group Materialica+ at the Cracow University of Technology. His expertise encompasses mathematical modeling, computer simulations, and industrial mathematics. He has provided a complete solution to the Riemann-Hilbert problem for multiply connected domains, applying it to the analytical theory of representative volume elements for dispersed composites. His interdisciplinary research spans a wide array of fields, including the effective properties of composites with deterministic and random structures, elliptic partial differential equations, symbolic computations, boundary value problems, asymptotic methods, packing, deterministic and random graphs, biomathematics, bioinformatics, porous media, permeability, diffusion, elasticity, heat conduction, fracture mechanics, electroosmotic phenomena, and viscous flow in wavy channels. Radosław Antoni Kycia, PhD, MBA, earned his PhD from Theoretical Physics from Jagiellonian University. He specializes in multidisciplinary projects involving Computer Science, Mathematics, and Physics. He collaborated with CERN, Brookhaven National Laboratory, and Masaryk University. He is the Head of the Computer Science Department at the Faculty of Computer Science and Telecommunications of the Cracow University of Technology. Wojciech Nawalaniec is a specialist in Computer Simulations and Applied Mathematics. His research focuses on the effective properties of random composites. He developed a computationally efficient symbolic-numerical algorithm to determine structural sums defined by an exponential complexity algorithm. He derived new higher-order formulas for the effective constants of dispersed composites. In addition to symbolic-numerical calculations, his scientific activity also involves simulations and the analysis of random structures using machine learning methods. Wojciech Nawalaniec currently works in the industry, exploring applications of AI in cyber risk quantification. Natalia Rylko pursued her Doctorate in Technical Sciences, specializing in Mechanics and Thermomechanics of Fiber Composite Materials, at Poznan University of Technology. She currently serves as the Vice Dean of the Department of Computer Science and Telecommunications at the Cracow University of Technology, where she is actively involved in educational and scientific endeavors. Her research in Materials Engineering focuses on applying advanced mathematical techniques, machine learning, and analyzing large datasets, including intricate composite material structures depicted in images.

See Also