Whilst inkjet technology is well-established on home and small office desktops and is now having increasing impact in commercial printing, it can also be used to deposit materials other than ink as individual droplets at a microscopic scale. This allows metals, ceramics, polymers and biological materials (including living cells) to be patterned on to substrates under precise digital control. This approach offers huge potential advantages for manufacturing, since inkjet methods can be used to generate structures and functions which cannot be attained in other ways.
Beginning with an overview of the fundamentals, this bookcovers the key components, for example piezoelectric print-heads and fluids for inkjet printing, and the processes involved. It goes on to describe specific applications, e.g. MEMS, printed circuits, active and passive electronics, biopolymers and living cells, and additive manufacturing. Detailed case studies are included on flat-panel OLED displays, RFID (radio-frequency identification) manufacturing and tissue engineering, while a comprehensive examination of the current technologies and future directions of inkjet technology completes the coverage.
With contributions from both academic researchers and leading names in the industry, Inkjet Technology for Digital Fabrication is a comprehensive resource for technical development engineers, researchers and students in inkjet technology and system development, and will also appeal to researchers in chemistry, physics, engineering, materials science and electronics.
Edited by:
Ian M. Hutchings (University Of Cambridge),
Graham D. Martin
Imprint: John Wiley & Sons Inc
Country of Publication: United States
Dimensions:
Height: 252mm,
Width: 170mm,
Spine: 23mm
Weight: 762g
ISBN: 9780470681985
ISBN 10: 0470681985
Pages: 400
Publication Date: 30 November 2012
Audience:
Professional and scholarly
,
Undergraduate
Format: Hardback
Publisher's Status: Active
About the Editors xiii List of Contributors xv Preface xvii 1. Introduction to Inkjet Printing for Manufacturing 1 Ian M. Hutchings and Graham D. Martin 1.1 Introduction 1 1.2 Materials and Their Deposition by Inkjet Printing 3 1.2.1 General Remarks 3 1.2.2 Deposition of Metals 3 1.2.3 Deposition of Ceramics 6 1.2.4 Deposition of Polymers 7 1.3 Applications to Manufacturing 8 1.3.1 Direct Deposition 9 1.3.2 Inkjet Mask Printing 12 1.3.3 Inkjet Etching 13 1.3.4 Inverse Inkjet Printing 14 1.3.5 Printing onto a Powder Bed 15 1.4 Potential and Limitations 15 References 17 2. Fundamentals of Inkjet Technology 21 Graham D. Martin and Ian M. Hutchings 2.1 Introduction 21 2.2 Surface Tension and Viscosity 23 2.3 Dimensionless Groups in Inkjet Printing 25 2.4 Methods of Drop Generation 27 2.4.1 Continuous Inkjet (CIJ) 27 2.4.2 Drop-on-Demand (DOD) 28 2.4.3 Electrospray 33 2.5 Resolution and Print Quality 34 2.6 Grey-Scale Printing 35 2.7 Reliability 36 2.8 Satellite Drops 38 2.9 Print-Head and Substrate Motion 39 2.10 Inkjet Complexity 42 References 42 3. Dynamics of Piezoelectric Print-Heads 45 J. Frits Dijksman and Anke Pierik 3.1 Introduction 45 3.2 Basic Designs of Piezo-Driven Print-Heads 47 3.3 Basic Dynamics of a Piezo-Driven Inkjet Print-Head (Single-Degree-of-Freedom Analysis) 49 3.4 Design Considerations for Droplet Emission from Piezo-Driven Print-Heads 60 3.4.1 Droplet Formation 60 3.4.2 Damping 66 3.4.3 Refilling 67 3.4.4 Deceleration Due to Elongational Effects Prior to Pinching Off 70 3.4.5 Summary 71 3.5 Multi-Cavity Helmholtz Resonator Theory 71 3.6 Long Duct Theory 77 3.7 Concluding Remarks 83 References 84 4. Fluids for Inkjet Printing 87 Stephen G. Yeates, Desheng Xu, Marie-Beatrice Madec, Dolores Caras-Quintero, Khalid A. Alamry, Andromachi Malandraki and Veronica Sanchez-Romaguera 4.1 Introduction 87 4.2 Print-Head Considerations 88 4.2.1 Continuous Inkjet (CIJ) 88 4.2.2 Thermal Inkjet (TIJ) 88 4.2.3 Piezoelectric Drop-on-Demand (Piezo-DOD) 89 4.3 Physical Considerations in DOD Droplet Formation 89 4.4 Ink Design Considerations 95 4.5 Ink Classification 95 4.5.1 Aqueous Ink Technology 96 4.5.2 Non-aqueous Ink Technologies 100 4.6 Applications in Electronic Devices 105 4.6.1 Organic Conducting Polymers 105 4.6.2 Conjugated Organic Semiconductors 106 4.6.3 Inorganic Particles 107 References 108 5. When the Drop Hits the Substrate 113 Jonathan Stringer and Brian Derby 5.1 Introduction 113 5.2 Stable Droplet Deposition 114 5.2.1 Deposition Maps 114 5.2.2 Impact of Millimetre-Size Droplets 116 5.2.3 Impact of Inkjet-Sized Droplets 119 5.3 Unstable Droplet Deposition 120 5.4 Capillarity-Driven Spreading 122 5.4.1 Droplet–Substrate Equilibrium 122 5.4.2 Capillarity-Driven Contact Line Motion 124 5.4.3 Contact Angle Hysteresis 125 5.5 Coalescence 126 5.5.1 Stages of Coalescence 126 5.5.2 Coalescence and Pattern Formation 128 5.5.3 Stable Bead Formation 128 5.5.4 Unstable Bead Formation 130 5.6 Phase Change 131 5.6.1 Solidification 132 5.6.2 Evaporation 132 5.7 Summary 134 References 135 6. Manufacturing of Micro-Electro-Mechanical Systems (MEMS) 141 David B. Wallace 6.1 Introduction 141 6.2 Limitations and Opportunities in MEMS Fabrication 142 6.3 Benefits of Inkjet in MEMS Fabrication 143 6.4 Chemical Sensors 144 6.5 Optical MEMS Devices 147 6.6 Bio-MEMS Devices 151 6.7 Assembly and Packaging 152 6.8 Conclusions 156 Acknowledgements 156 References 156 7. Conductive Tracks and Passive Electronics 159 Jake Reder 7.1 Introduction 159 7.2 Vision 159 7.3 Drivers 160 7.3.1 Efficient Use of Raw Materials 160 7.3.2 Short-Run and Single-Example Production 161 7.3.3 Capital Equipment 162 7.4 Incumbent Technologies 162 7.5 Conductive Tracks and Contacts 162 7.5.1 What Is Conductivity? 162 7.5.2 Conductive Tracks in the Third Dimension 163 7.5.3 Contacts 163 7.6 Raw Materials: Ink 164 7.6.1 Particles 164 7.6.2 Dispersants 168 7.6.3 Carriers (Liquid Media) 170 7.6.4 Other Additives 170 7.7 Raw Materials: Conductive Polymers 172 7.8 Raw Materials: Substrates 172 7.9 Printing Processes 174 7.10 Post Deposition Processing 174 7.10.1 Sintering 174 7.10.2 Protective Layers 175 7.11 Resistors 175 7.12 Capacitors 176 7.13 Other Passive Electronic Devices 176 7.13.1 Fuses, Circuit Breakers, and Switches 176 7.13.2 Inductors and Transformers 177 7.13.3 Batteries 177 7.13.4 Passive Filters 177 7.13.5 Electrostatic Discharge (ESD) 177 7.13.6 Thermal Management 178 7.14 Outlook 178 References 178 8. Printed Circuit Board Fabrication 183 Neil Chilton 8.1 Introduction 183 8.2 What Is a PCB? 183 8.3 How Is a PCB Manufactured Conventionally? 185 8.4 Imaging 185 8.4.1 Imaging Using Phototools 187 8.4.2 Laser Direct Imaging 188 8.5 PCB Design Formats 188 8.6 Inkjet Applications in PCB Manufacturing 189 8.6.1 Introduction 189 8.6.2 Legend Printing 190 8.6.3 Soldermask 194 8.6.4 Etch Resist 195 8.7 Future Possibilities 202 References 205 9. Active Electronics 207 Madhusudan Singh, Hanna M. Haverinen, Yuka Yoshioka and Ghassan E. Jabbour 9.1 Introduction 207 9.2 Applications of Inkjet Printing to Active Devices 211 9.2.1 OLEDs 211 9.2.2 Other Displays 213 9.2.3 Energy Storage Using Batteries and Supercapacitors 214 9.2.4 Photovoltaics 215 9.2.5 Sensors 217 9.2.6 Transistors, Logic, and Memory 219 9.2.7 Contacts and Conductors 221 9.2.8 In Situ Synthesis and Patterning 223 9.2.9 Biological Applications 223 9.3 Future Outlook 224 References 225 10. Flat Panel Organic Light-Emitting Diode (OLED) Displays: A Case Study 237 Julian Carter, Mark Crankshaw and Sungjune Jung 10.1 Introduction 237 10.2 Development of Inkjet Printing for OLED Displays 238 10.3 Inkjet Requirements for OLED Applications 241 10.3.1 Introduction 241 10.3.2 Display Geometry 241 10.3.3 Containment and Solid Content 241 10.4 Ink Formulation and Process Control 243 10.5 Print Defects and Control 246 10.6 Conclusions and Outlook 249 Acknowledgements 250 References 250 11. Radiofrequency Identification (RFID) Manufacturing: A Case Study 255 Vivek Subramanian 11.1 Introduction 255 11.2 Conventional RFID Technology 256 11.2.1 Introduction 256 11.2.2 RFID Standards and Classifications 256 11.2.3 RFID Using Silicon 258 11.3 Applications of Printing to RFID 260 11.4 Printed Antenna Structures for RFID 260 11.4.1 The Case for Printed Antennae 260 11.4.2 Printed RFID Antenna Technology 261 11.4.3 Summary of Status and Outlook for Printed Antennae 262 11.5 Printed RFID Tags 263 11.5.1 Introduction 263 11.5.2 Topology and Architecture of Printed RFID 264 11.5.3 Devices for Printed RFID 267 11.6 Conclusions 273 References 273 12. Biopolymers and Cells 275 Paul Calvert and Thomas Boland 12.1 Introduction 275 12.2 Printers for Biopolymers and Cells 277 12.2.1 Printer Types 277 12.2.2 Piezoelectric Print-Heads 277 12.2.3 Thermal Inkjet Print-Heads 279 12.2.4 Comparison of Thermal and Piezoelectric Inkjet for Biopolymer Printing 279 12.2.5 Other Droplet Printers 280 12.2.6 Rapid Prototyping and Inkjet Printing 281 12.3 Ink Formulation 282 12.3.1 Introduction 282 12.3.2 Printed Resolution 283 12.3.3 Major Parameters: Viscosity and Surface Tension 283 12.3.4 Drying 285 12.3.5 Corrosion 285 12.3.6 Nanoparticle Inks 285 12.3.7 Biopolymer Inks 285 12.4 Printing Cells 289 12.4.1 Cell-Directing Patterns 289 12.4.2 Cell-Containing Inks 289 12.4.3 Effects of Piezoelectric and Thermal Print-Heads on Cells 290 12.4.4 Cell Attachment and Growth 291 12.4.5 Biocompatibility in the Body 292 12.5 Reactive Inks 292 12.6 Substrates for Printing 296 12.7 Applications 297 12.7.1 Tissue Engineering 297 12.7.2 Bioreactors 298 12.7.3 Printed Tissues 298 12.8 Conclusions 299 References 299 13. Tissue Engineering: A Case Study 307 Makoto Nakamura 13.1 Introduction 307 13.1.1 Tissue Engineering and Regenerative Medicine 307 13.1.2 The Third Dimension in Tissue Engineering and Regenerative Medicine 308 13.1.3 The Current Approach for Manufacturing 3D Tissues 309 13.1.4 A New Approach of Direct 3D Fabrication with Live Cell Printing 309 13.2 A Feasibility Study of Live Cell Printing by Inkjet 310 13.3 3D Biofabrication by Gelation of Inkjet Droplets 313 13.4 2D and 3D Biofabrication by a 3D Bioprinter 314 13.4.1 Micro-Gel Beads 314 13.4.2 Micro-Gel Fiber and Cell Printing 315 13.4.3 2D and 3D Fabrication of Gel Sheets and Gel Mesh 316 13.4.4 Fabrication of 3D Gel Tubes 316 13.4.5 Multicolor 3D Biofabrication 316 13.4.6 Viscosity in Inkjet 3D Biofabrication 318 13.5 Use of Inkjet Technology for 3D Tissue Manufacturing 319 13.5.1 Resolution and DOD Color Printing 319 13.5.2 Direct Printing of Live Cells 319 13.5.3 High-Speed Printing 319 13.5.4 3D Fabrication Using Hydrogels 320 13.5.5 Linkage to Digital Data Sources 321 13.5.6 Applicability to Various Materials including Humoral Factors and Nanomaterials 321 13.5.7 Use of Pluripotent Stem Cells in Bioprinting 322 13.6 Summary and Future Prospects 322 Acknowledgements 323 References 323 14. Three-Dimensional Digital Fabrication 325 Bill O’Neill 14.1 Introduction 325 14.2 Background to Digital Fabrication 326 14.3 Digital Fabrication and Jetted Material Delivery 329 14.4 Liquid-Based Fabrication Techniques 330 14.4.1 PolyJet™: Objet Geometries 330 14.4.2 ProJet™: 3D Systems 333 14.4.3 Solidscape 3D Printers 333 14.5 Powder-Based Fabrication Techniques 335 14.5.1 ZPrinter™: Z Corporation 335 14.5.2 Other Powder-Based 3D Printers 338 14.6 Research Challenges 338 14.7 Future Trends 340 References 341 15. Current Inkjet Technology and Future Directions 343 Mike Willis 15.1 The Inkjet Print-Head as a Delivery Device 343 15.2 Limitations of Inkjet Technology 344 15.2.1 Jetting Fluid Constraints 344 15.2.2 Control of Drop Volume 345 15.2.3 Variations in Drop Volume 345 15.2.4 Jet Directionality and Drop Placement Errors 345 15.2.5 Aerodynamic Effects 347 15.2.6 Impact and Surface Wetting Effects 348 15.3 Today’s Dominant Technologies and Limitations 348 15.3.1 Thermal DOD Inkjet 348 15.3.2 Piezoelectric DOD Inkjet 350 15.4 Other Current Technologies 351 15.4.1 Continuous Inkjet 351 15.4.2 Electrostatic DOD 351 15.4.3 Acoustic Drop Ejection 352 15.5 Emerging Technologies 353 15.5.1 Stream 353 15.5.2 Mems 354 15.5.3 Flextensional 356 15.5.4 Tonejet 356 15.6 Future Trends for Print-Head Manufacturing 357 15.7 Future Requirements and Directions 358 15.7.1 Customisation of Print-Heads for Digital Fabrication 358 15.7.2 Reduce Sensitivity of Jetting to Ink Characteristics 359 15.7.3 Higher Viscosities 359 15.7.4 Higher Stability and Reliability 360 15.7.5 Drop Volume Requirements 360 15.7.6 Lower Costs 361 15.8 Summary of Status of Inkjet Technology for Digital Fabrication 361 References 362 Index 363
Ian Hutchings is Professor of Manufacturing Engineering at the University of Cambridge. He is also Principal Investigator for the EPSRC and industry-funded project on Next Generation Inkjet Technology: A major UK collaborative initiative. Dr Graham Martin is currently Director for the Inkjet Research Centre at Cambridge University, and prior to this he spent many years in the inkjet industry.