WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

How to Think Like a Mathematician

A Companion to Undergraduate Mathematics

Kevin Houston (University of Leeds)

$57.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Cambridge University Press
12 February 2009
Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
By:  
Imprint:   Cambridge University Press
Country of Publication:   United Kingdom
Dimensions:   Height: 254mm,  Width: 195mm,  Spine: 19mm
Weight:   560g
ISBN:   9780521719780
ISBN 10:   052171978X
Publication Date:  
Audience:   College/higher education ,  Primary
Format:   Paperback
Publisher's Status:   Active
Preface; Part I. Study Skills For Mathematicians: 1. Sets and functions; 2. Reading mathematics; 3. Writing mathematics I; 4. Writing mathematics II; 5. How to solve problems; Part II. How To Think Logically: 6. Making a statement; 7. Implications; 8. Finer points concerning implications; 9. Converse and equivalence; 10. Quantifiers – For all and There exists; 11. Complexity and negation of quantifiers; 12. Examples and counterexamples; 13. Summary of logic; Part III. Definitions, Theorems and Proofs: 14. Definitions, theorems and proofs; 15. How to read a definition; 16. How to read a theorem; 17. Proof; 18. How to read a proof; 19. A study of Pythagoras' Theorem; Part IV. Techniques of Proof: 20. Techniques of proof I: direct method; 21. Some common mistakes; 22. Techniques of proof II: proof by cases; 23. Techniques of proof III: Contradiction; 24. Techniques of proof IV: Induction; 25. More sophisticated induction techniques; 26. Techniques of proof V: contrapositive method; Part V. Mathematics That All Good Mathematicians Need: 27. Divisors; 28. The Euclidean Algorithm; 29. Modular arithmetic; 30. Injective, surjective, bijective – and a bit about infinity; 31. Equivalence relations; Part VI. Closing Remarks: 32. Putting it all together; 33. Generalization and specialization; 34. True understanding; 35. The biggest secret; Appendices: A. Greek alphabet; B. Commonly used symbols and notation; C. How to prove that …; Index.

Reviews for How to Think Like a Mathematician: A Companion to Undergraduate Mathematics

"""In this book, Houston has created a primer on the fundamental abstract ideas of mathematics; the primary emphasis is on demonstrating the many principles and tactics used in proofs. The material is explained in ways that are comprehensible, which will be a great help for people who seem to hit the wall regarding what to do when confronted with the creation of a proof... In this book, Houston takes a systematic and gentle approach to explaining the ideas of mathematics and how tactics of reasoning can be combined with those ideas to generate what would be considered a convincing proof."" Charles Ashbacher, Journal of Recreational Mathematics ""The author provides concise, crisp explanations, including definitions, examples, tips, remarks, warnings, and idea-reinforcing questions. Houston expresses thoughts clearly and concisely, and includes succinct remarks to make points, clarify arguments, and reveal subleties."" W.R. Lee, Choice Magazine"


See Also