WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

$379.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Elsevier - Health Sciences Division
01 January 2024
High pressures play a more and more important role in modern technology. Examples are the supercritical fluid extraction of medical drugs and dyes from biological material, the handling of compressed or liquefied gases (including natural gas or hydrogen), the operation of modern thermal power plants, and various technical processes for controlled particle formation. High-Pressure Fluid Phase Equilibria, Second Edition enables understanding of the complicated phase behavior that fluid or fluid mixtures (liquids, gases, or supercritical phases) can exhibit at elevated pressures. The underlying thermodynamic equations are explained, and robust algorithms for the computation of such equilibria (including solid–fluid equilibria) are proposed.

Since the publication of the first edition of this book, there have been many new developments, for instance, differential equation methods for the computation of phase equilibria, accurate numerical differentiation, and high-precision equations of state (e.g., the GERG model). Moreover, more detail and explanation has been added on important topics that were only briefly examined in the original book to better assist the reader, such as expansion processes and chemical reactions).

The book remains invaluable as a single resource for grasping the intricacies of fluid phase behavior. It enables the readers to write or improve their own computer programs for the calculation of phase equilibria. It will appeal to graduate students of chemical engineering and university research staff involved in chemical engineering of supercritical fluids or the physical chemistry of fluids; the book can also serve as the basis of lectures or advanced students’ seminars.
By:   , , ,
Imprint:   Elsevier - Health Sciences Division
Country of Publication:   United States
Edition:   2nd edition
Dimensions:   Height: 229mm,  Width: 152mm, 
ISBN:   9780443132803
ISBN 10:   0443132801
Series:   Supercritical Fluid Science and Technology
Pages:   474
Publication Date:  
Audience:   Professional and scholarly ,  College/higher education ,  Undergraduate ,  Further / Higher Education
Format:   Paperback
Publisher's Status:   Active
Introduction Phenomenology of phase diagrams Experimental observation of phase equilibria Thermodynamic variables and functions Stability and equilibrium Non-isothermal applications and chemically reactive systems Solid–fluid equilibrium Equations of state for pure fluids Equations of state for mixtures Global phase diagrams Appendices: Algebraic and numeric methods Theorems and proofs Equations of state: auxiliary equations for programming Solutions of the problems

Ulrich Deiters was born in 1953. He studied chemistry at the Ruhr University of Bochum (Germany), where he, under the supervision of Gerhard M. Schneider, obtained his doctorate in physical chemistry in 1979. He then joined the groups of Keith E. Gubbins and William B. Streett at the Cornell University, Ithaca (USA). After his return to Bochum he founded his own research group. He served for many years as chairman of the IUPAC Subcomittee on Thermodynamic Data. In 1993 he became a professor of physical chemistry at the University of Cologne, from where he formally retired in 2018. His main research fields are the thermodynamics and statistical thermodynamics of fluid mixtures, Monte Carlo simulation, prediction of thermodynamic data ab initio from quantum mechanical calculations, and the development of mathematical methods for the prediction of phase diagrams. Thomas Kraska was born in 1964. He studied chemistry at the Ruhr University of Bochum (Germany), where he, under the supervision of Ulrich K. Deiters, obtained his doctorate in physical chemistry in 1992. He then joined the group of Keith E. Gubbins at Cornell University, Ithaca (USA) for two years, followed by a research stay for 6 months in the group of Kenneth S. Pitzer at UC Berkeley (USA). He returned to Cologne University in Germany and founded his own research group. In 1999 he obtained his habilitation and continued in Cologne with research on molecular thermodynamics, MD simulation, and the nucleation and growth of metallic and pharmaceutical nanoparticles. At present he is active in the field of chemical education, fostering physical chemistry, mathematization, and molecular simulation in secondary chemistry education.

See Also