Gabriel P. Paternain is Professor of Mathematics at the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge and a Fellow of Trinity College. His research has covered an ample mathematical landscape, including Hamiltonian dynamics, symplectic geometry and geometric inverse problems. He is the author of the monograph 'Geodesic Flows' (1999), and was awarded the Pilkington Teaching Prize at Cambridge for his ability to explain analysis and geometry with a clarity that has won him the admiration and respect of his students. Mikko Salo is Professor of Mathematics at the University of Jyväskylä, Finland. He has received several awards for his work on inverse problems in partial differential equations and geometry, including the Calderón prize, the Väisälä prize, an ERC Starting Grant and an ERC Consolidator Grant. Gunther Uhlmann is the Walker Family Endowed Professor at the University of Washington and the Si Yuan Professor at the Hong Kong University of Science and Technology. He has worked on microlocal analysis and a broad spectrum of inverse problems. He was awarded the AMS Bocher Prize, the Kleinman Prize from SIAM, the Solomon Lefschetz Medal from the Mathematical Council of the Americas and the Birkhoff Prize, awarded jointly by SIAM and the AMS.
'This monograph gives a beautiful introduction to Geometric inverse problems, largely in dimension two, by three of the most prominent contributors to the field. The Geometric problems are interesting as pure mathematics, but they also arise from applications to tomography, such as the Calderon problem of determining (M, g) from its Dirichlet-to-Neumann map. Roughly speaking, the underlying physics problem is to determine electrical properties of a medium by making voltage and current measurements on the boundary. Techniques of microlocal analysis relate such PDE boundary inverse problems to geometric inverse problems. These inverse problems furnish problems of great interest in PDE and in geometry in a rather concrete setting, and are masterfully conveyed by the authors. The level is appropriate for a graduate class in mathematics but is also an excellent entrée into the field for research mathematicians.' Steve Zelditch, Northwestern University