This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.
By:
Wendell Fleming
Imprint: Springer-Verlag New York Inc.
Country of Publication: United States
Edition: 2nd ed. 1977
Dimensions:
Height: 234mm,
Width: 156mm,
Spine: 23mm
Weight: 1.710kg
ISBN: 9780387902067
ISBN 10: 0387902066
Series: Undergraduate Texts in Mathematics
Pages: 412
Publication Date: 08 March 1977
Audience:
College/higher education
,
Professional and scholarly
,
Professional & Vocational
,
A / AS level
,
Further / Higher Education
Format: Hardback
Publisher's Status: Active
1 Euclidean spaces.- 1.1 The real number system.- 1.2 Euclidean En.- 1.3 Elementary geometry of En.- 1.4 Basic topological notions in En.- *1.5 Convex sets.- 2 Elementary topology of En.- 2.1 Functions.- 2.2 Limits and continuity of transformations.- 2.3 Sequences in En.- 2.4 Bolzano-Weierstrass theorem.- 2.5 Relative neighborhoods, continuous transformations.- 2.6 Topological spaces.- 2.7 Connectedness.- 2.8 Compactness.- 2.9 Metric spaces.- 2.10 Spaces of continuous functions.- *2.11 Noneuclidean norms on En.- 3 Differentiation of real-valued functions.- 3.1 Directional and partial derivatives.- 3.2 Linear functions.- **3.3 Difierentiable functions.- 3.4 Functions of class C(q).- 3.5 Relative extrema.- *3.6 Convex and concave functions.- 4 Vector-valued functions of several variables.- 4.1 Linear transformations.- 4.2 Affine transformations.- 4.3 Differentiable transformations.- 4.4 Composition.- 4.5 The inverse function theorem.- 4.6 The implicit function theorem.- 4.7 Manifolds.- 4.8 The multiplier rule.- 5 Integration.- 5.1 Intervals.- 5.2 Measure.- 5.3 Integrals over En.- 5.4 Integrals over bounded sets.- 5.5 Iterated integrals.- 5.6 Integrals of continuous functions.- 5.7 Change of measure under affine transformations.- 5.8 Transformation of integrals.- 5.9 Coordinate systems in En.- 5.10 Measurable sets and functions; further properties.- 5.11 Integrals: general definition, convergence theorems.- 5.12 Differentiation under the integral sign.- 5.13 Lp-spaces.- 6 Curves and line integrals.- 6.1 Derivatives.- 6.2 Curves in En.- 6.3 Differential 1-forms.- 6.4 Line integrals.- *6.5 Gradient method.- *6.6 Integrating factors; thermal systems.- 7 Exterior algebra and differential calculus.- 7.1 Covectors and differential forms of degree 2.- 7.2 Alternating multilinearfunctions.- 7.3 Multicovectors.- 7.4 Differential forms.- 7.5 Multivectors.- 7.6 Induced linear transformations.- 7.7 Transformation law for differential forms.- 7.8 The adjoint and codifferential.- *7.9 Special results for n = 3.- *7.10 Integrating factors (continued).- 8 Integration on manifolds.- 8.1 Regular transformations.- 8.2 Coordinate systems on manifolds.- 8.3 Measure and integration on manifolds.- 8.4 The divergence theorem.- *8.5 Fluid flow.- 8.6 Orientations.- 8.7 Integrals of r-forms.- 8.8 Stokes’s formula.- 8.9 Regular transformations on submanifolds.- 8.10 Closed and exact differential forms.- 8.11 Motion of a particle.- 8.12 Motion of several particles.- Axioms for a vector space.- Mean value theorem; Taylor’s theorem.- Review of Riemann integration.- Monotone functions.- References.- Answers to problems.