WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

Fluorine Magnetic Resonance Imaging

Methods and Applications in Biomedicine

Eric T. Ahrens Ulrich Flögel

$406

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Jenny Stanford Publishing
11 October 2024
Image-based biomarkers that report on specific cell phenotypes in the body are highly valued for disease detection and monitoring cytotherapies. Towards this need, there is sustained scientific interest in fluorine-19 (19F) magnetic resonance imaging (MRI) for in vivo molecular–cellular imaging applications. The attraction of 19F tracer MRI is its ability to produce pure ‘hot-spot’ images, an absence of false-positive signals, robust quantification, and tracer safety. For molecular–cellular applications, fluorine MRI does not require a pre-scan prior to tracer administration, thus offering several advantages over metal–ion-based proton (1H) contrast-agent approaches. Key applications of 19F MRI include cell tracking, inflammation detection, and biosensing. Fluorinated imaging tracers can also serve as therapeutic agents or drug-delivery vehicles. Over the past decade, the field of 19F MRI has seen remarkable innovation in tracer designs and detection methods as well as the realization of its clinical potential.

This book is an interdisciplinary compendium detailing cutting-edge science and biomedical research in the emerging field of 19F MRI and includes technical issues, such as pulse sequence considerations and limits of detection of the techniques; synthesis of novel 19F MRI tracer agents; inflammation, cancer, and stroke imaging; regenerative brain repair; theranostic nanomedicine; and clinical perspectives. The book will appeal to investigators involved in MRI physics, biomedicine, immunology, pharmacology, and probe chemistry as well as general readers.
Edited by:   ,
Imprint:   Jenny Stanford Publishing
Country of Publication:   Singapore
Dimensions:   Height: 229mm,  Width: 152mm, 
Weight:   739g
ISBN:   9789815129373
ISBN 10:   9815129376
Pages:   302
Publication Date:  
Audience:   College/higher education ,  Professional and scholarly ,  Primary ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
1. Polymeric 19F MRI Agents: Designing Responsive Imaging Agents 2. Nanofluorides: Inorganic Fluoride Nanocrystals for 19F MRI 3. Multibranched Superfluorinated Molecular Probes for 19F MRI 4. Development of Perfluorocarbon-Encapsulated Silica Nanoparticle as 19F MRI Tracer Agent 5. Perfluorocarbon Theranostic Nanoemulsions: From Imaging to Treatment of Inflammatory Diseases and Pain 6. Choosing and Optimizing a Pulse Sequence for Fluorine-19 MRI 7. 19F for Quantitative Tracking of Immune Cells Involved in Cancer Progression and Therapy 8. Noninvasive In Vivo Imaging of Neutrophil Trafficking by 19F MRI 9. 19F MRI to Map the Spatio-Temporal Infiltration of Immune Cells in Stroke and Tissue-Regeneration 10. Sensitivity and 19F MRI Cell Tracking

Eric T. Ahrens is a professor of radiology at the University of California San Diego and the director of Stem Cell Molecular Imaging at the Sanford Consortium for Regenerative Medicine, California, USA. His research focuses on adapting non-invasive imaging methods to visualize specific cell populations in the body. He has pioneered MRI-based cell-tracking materials and methods that have been adopted by numerous investigators worldwide. Innovations by his laboratory include the synthesis of functionalized perfluorocarbon-based nanoemulsion probes for sensitive MRI, PET, and fluorescence detection. He led a team that developed a novel clinical perfluorocarbon 19F MRI cell-tracking agent and performed first-in-human studies to visualize the fate of cancer cell therapy grafts post-transfer. He has authored more than 100 scholarly publications in the fields of physics, chemistry, biology, and biomedicine and is an inventor on 12 patents. Ulrich Flögel is a professor for experimental cardiovascular imaging at the Department of Molecular Cardiology, Heinrich-Heine University of Düsseldorf, Germany. His research focuses on the interplay of function, energetics, metabolism, and inflammation as well as their role in the development of cardiovascular disease using innovative multinuclear MRI/MRS techniques, particularly 19F tracers. His efforts have established a broad molecular imaging platform that can track inflammatory and thrombotic processes with high specificity in parallel to metabolic and energetic alterations together with in-depth tissue microstructure characterizations.

Reviews for Fluorine Magnetic Resonance Imaging: Methods and Applications in Biomedicine

“Since the previous book by the editors on this subject, the field of 19F MRI has continued to grow at a rapid pace. This book provides a comprehensive overview of the latest developments in the chemistry of fluorinated nanoprobes, methods of improved detection, and cellular and molecular imaging applications—a must-read for those in and entering the field.” Jeff W. M. Bulte The Johns Hopkins University School of Medicine, USA


See Also