Michael A. Hill is Professor at the University of California, Los Angeles. He is the author of several papers on algebraic topology and is an editor for journals including Mathematische Zeitschrift and Transactions of the American Mathematical Society. Michael J. Hopkins is Professor at Harvard University. His research concentrates on algebraic topology. In 2001, he was awarded the Oswald Veblen Prize in Geometry from the AMS for his work in homotopy theory, followed by the NAS Award in Mathematics in 2012 and the Nemmers Prize in Mathematics in 2014. Douglas C. Ravenel is the Fayerweather Professor of Mathematics at the University of Rochester. He is the author of two influential previous books in homotopy theory and roughly 75 journal articles on stable homotopy theory and algebraic topology.
'... the book succeeds in simultaneously being readable as well as presenting a complex result, in providing tools without being lost in details, and in showing an exciting journey from classical to (at the time of this review) modern stable homotopy theory. Thus, we can expect that it will find a home on many topologists' bookshelves.' Constanze Roitzheim, zbMATH 'The purpose of the book under review is to give an expanded and systematic development of the part of equivariant stable homotopy theory required by readers wishing to understand the proof of the Kervaire Invariant Theorem. The book fully achieves this design aim. The book ends with a 130-page summary of the proof of the theorem, and having this as a target shapes the entire narrative.' J. P. C. Greenlees, MathSciNet