WIN $150 GIFT VOUCHERS: ALADDIN'S GOLD

Close Notification

Your cart does not contain any items

Data Driven Science for Clinically Actionable Knowledge in Diseases

Daniel Catchpoole Simeon Simoff Paul Kennedy Quang Vinh Nguyen

$126

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Chapman & Hall/CRC
06 December 2023
Data-driven science has become a major decision-making aid for the diagnosis and treatment of disease. Computational and visual analytics enables effective exploration and sense making of large and complex data through the deployment of appropriate data science methods, meaningful visualisation and human-information interaction.

This edited volume covers state-of-the-art theory, method, models, design, evaluation and applications in computational and visual analytics in desktop, mobile and immersive environments for analysing biomedical and health data. The book is focused on data-driven integral analysis, including computational methods and visual analytics practices and solutions for discovering actionable knowledge in support of clinical actions in real environments.

By studying how data and visual analytics have been implemented into the healthcare domain, the book demonstrates how analytics influences the domain through improving decision making, specifying diagnostics, selecting the best treatments and generating clinical certainty.
Edited by:   , , ,
Imprint:   Chapman & Hall/CRC
Country of Publication:   United Kingdom
Dimensions:   Height: 234mm,  Width: 156mm, 
Weight:   630g
ISBN:   9781032273532
ISBN 10:   1032273534
Series:   Analytics and AI for Healthcare
Pages:   236
Publication Date:  
Audience:   College/higher education ,  Primary
Format:   Hardback
Publisher's Status:   Active
Chapter 1. Understanding the Impact of Patient Journey Patterns on Health Outcomes for Patients with Diabetes. Chapter 2. COVID-19 Impact Analysis on Patients with Complex Health Conditions: A Literature Review. Chapter 3. Estimating the Relative Contribution of Transmission to the Prevalence of Drug Resistance in Tuberculosis. Chapter 4. A Novel Diagnosis System for Parkinson’s Disease Based on Ensemble Random Forest. Chapter 5. Harmonization of Brain Data across Sites and Scanners. Chapter 6. Feature-Ranking Methods for RNA Sequencing Data. Chapter 7. Graph Neural Networks for Brain Tumour Segmentation. Chapter 8. Biomedical Data Analytics and Visualisation—A Methodological Framework. Chapter 9. Visualisation for Explainable Machine Learning in Biomedical Data Analysis. Chapter 10. Visual Communication and Trust in the Health Domain.

Daniel R. Catchpoole is the Group Leader of the Tumour Bank, Children’s Cancer Research Unit, Children’s Hospital, Westmead, Australia. He is also affiliated with the Faculty of Medicine at the University of Sydney and the Department of Information Technology at the University of Technology Sydney. Simeon J. Simoff is the Cluster Pro Vice Chancellor (Science, Technology, Engineering and Mathematics) and Dean of the School of Computer, Data and Mathematical Sciences at Western Sydney University. Paul J. Kennedy is the Director of the Biomedical Data Science Laboratory at the Australia Artificial Intelligence Institute and the Head of Computer Science in the Faculty of Engineering and Information Technology at the University of Technology Sydney. Quang Vinh Nguyen is the Director of Academic Programs for Postgraduate ICT at the School of Computer, Data and Mathematical Sciences and the MARCS Institute for Brain, Behaviour and Development at Western Sydney University.

Reviews for Data Driven Science for Clinically Actionable Knowledge in Diseases

"""The intersection of the computational, biological, and medical sciences is poised to revolutionize personalized medicine across a vast spectrum of diseases and in low, medium, and high income countries. This new book, Data Driven Science for Clinically Actionable Knowledge in Diseases, serves as a fantastic overview of the space for all stakeholders. The text enables readers to learn both about the trajectory of the space, and to identify specific technical use cases where success has been shown and which can be re-deployed into new systems."" – Dr Noah Berlow, First Ascent Biomedical ""Health data is inherently complex and collected via wildly diverse channels. This book shows how leveraging health data is difficult, difficult to collect, and difficult to synthesise, but how much patient care can be improved when it is done well."" – Prof David Skillicorn, Queens University, Kingston, Ontario, Canada"


See Also