THE BIG SALE IS ON! TELL ME MORE

Close Notification

Your cart does not contain any items

$405.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Elsevier - Health Sciences Division
09 February 2024
Progresses in Ammonia: Science, Technology, and Membranes: Production and Separation covers the production and separation of ammonia. Ammonia is considered a very important inorganic basic. It plays an essential role in the manufacture of fertilizer, as well as in the production of plastics, fibers, explosives, and intermediates for dyes and pharmaceuticals. Beginning with the discussion of composite membrane–based systems, this book explores ammonia synthesis, ammonia separation through membrane distillation, ammonia recovery from wastewater and salty liquids, and ammonia emission control. Model-based analysis has also been used extensively in this book through various case studies. Therefore this book is a valuable resource for postgraduate students, researchers, energy producers, and R&D managers.

Edited by:   , , , , ,
Imprint:   Elsevier - Health Sciences Division
Country of Publication:   United States
Dimensions:   Height: 235mm,  Width: 191mm, 
Weight:   450g
ISBN:   9780323885027
ISBN 10:   0323885020
Pages:   440
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active

Angelo Basile, a Chemical Engineer, is a senior Researcher at the ITM-CNR, University of Calabria, where he is responsible for research related to both the ultra-pure hydrogen production and CO2 capture using Pd-based Membrane Reactors. Angelo Basile's h-index is 53, with 387 document results with a total of 8,910 citations in 5,034 documents (www.scopus.com – 24 May 2023). He has more than 170 scientific papers in peer-to-peer journals and 252 papers in international congresses; and is a reviewer for 165 int. journals, an editor/author of more than 50 scientific books and 120 chapters on international books on membrane science and technology; 6 Italian patents, 2 European patents and 5 worldwide patents. He is referee of 104 international scientific journals and Member of the Editorial Board of 22 of them. Basile is also Editor associate of the Int. J. Hydrogen Energy and Editor-in-chief of the Int. J. Membrane Science & Technol. and Editor-in-chief of Membrane Processes (Applications), a section of the Intl J. Membranes. Basile also prepared 42 special issues on membrane science and technology for many international journals (IJHE, Chem Eng. J., Cat. Today, etc.). He participated to and was/is responsible of many national and international projects on membrane reactors and membrane science. Basile served as Director of the ITM-CNR during the period Dec. 2008 – May 2009. In the last years, he was tutor of 30 Thesis for master and Ph.D. students at the Chemical Engineering Department of the University of Calabria (Italy). From 2014, Basile is Full Professor of Chemical Engineering Processes. Prof. Mohammad Reza Rahimpour is a professor in Chemical Engineering at Shiraz University, Iran. He received his Ph.D. in Chemical Engineering from Shiraz University joint with University of Sydney, Australia 1988. He started his independent career as Assistant Professor in September 1998 at Shiraz University. Prof. M.R. Rahimpour, was a Research Associate at University of California, Davis from 2012 till 2017. During his stay in University of California, he developed different reaction networks and catalytic processes such as thermal and plasma reactors for upgrading of lignin bio-oil to biofuel with collaboration of UCDAVIS. He has been a Chair of Department of Chemical Engineering at Shiraz University from 2005 till 2009 and from 2015 till 2020. Prof. M.R. Rahimpour leads a research group in fuel processing technology focused on the catalytic conversion of fossil fuels such as natural gas, and renewable fuels such as bio-oils derived from lignin to valuable energy sources. He provides young distinguished scholars with perfect educational opportunities in both experimental methods and theoretical tools in developing countries to investigate in-depth research in the various field of chemical engineering including carbon capture, chemical looping, membrane separation, storage and utilization technologies, novel technologies for natural gas conversion and improving the energy efficiency in the production and use of natural gas industries.

See Also